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Abstract

Topological semimetals in ferromagnetic materials have attracted enormous atten-

tion due to the potential applications in spintronics. Using the first-principles density

functional theory together with an effective lattice model, here we present a new fam-

ily of topological semimetals with a fully spin-polarized nodal loop in alkaline-metal

monochalcogenide MX (M = Li, Na, K, Rb, Cs; X = S, Se, Te) monolayers. The

half-metallic ferromagnetism can be established in MX monolayers, in which one nodal

loop formed by two crossing bands with the same spin components is found at the

Fermi energy. This nodal loop half-metal survives even when considering the spin-orbit

coupling owing to the symmetry protection provided by the Mz mirror plane. The

quantum anomalous Hall state and Weyl-like semimetal in this system can be also

achieved by rotating the spin from the out-of-plane to the in-plane direction. The MX

monolayers hosting rich topological phases thus offer an excellent materials platform

for realizing the advanced spintronics concepts.
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Spintronics is a multidisciplinary field, which utilizes the electron’s spin degree of freedom

as an information carrier for data storage and processing.1,2 Compared with conventional

semiconductor devices, spintronic devices have higher integration density, faster processing

speed, and lower power consumption. However, many issues such as the generation and trans-

port of a pure spin current still present profound challenges in realizing three-dimensional

spintronics devices,3,4 hindering the range of possible competitive applications. In this re-

spect, the two-dimensional (2D) materials are being currently promoted as a flagship for

realizing advanced spintronics concepts, among which the emerging 2D topological quantum

states exhibiting striking advantages for spintronics, have attracted tremendous attention in

recent years.

2D nodal loop semimetals (NLSs)5,6 provide an exciting avenue for realizing topological

quantum phase transitions between the gapped and gapless states. Physically, the 2D NLSs

are topologically protected by the crystal symmetry, e.g., mirror or glide-mirror symmetry.

These proposed protection mechanisms provide guiding principles for predicting real mate-

rials to realize various NLSs. Many exotic properties were reported to be associated with

NLSs, including high-temperature surface superconductivity,7 non-dispersive Landau energy

level,8 and specific long-range Coulomb interactions.9 Recent advances in the domain of 2D

ferromagnetic (FM) materials gave an additional boost to the young field of NLSs. Unlike

the previously proposed NLSs in nonmagnetic materials, it was recently proposed that the

NLSs can be achieved in 2D ferromagnets due to band crossings occuring between the states

of opposite spins.10,11 Nevertheless, for applications which rely on strong spin-polarization

of generated currents, it is desired to realize the NLSs in fully spin-polarized 2D systems,

such as half-metals.

In this work, using the first-principles calculation together with an effective lattice model,

we present a family of fully spin-polarized NLSs, termed nodal loop half-metals (NLHMs),

in 2D FM alkaline-metal monochalcogenides MX (M = Li, Na, K, Rb, Cs; X = S, Se, Te)

monolayers (MLs). When the magnetization points along the out-of-plane direction (i.e., z
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axis), MX MLs are 2D NLHMs in the sense that the nodal points intersecting from two spin-

down bands form a closed loop in the first Brillouin zone. The NLHM discovered here is a

topologically protected state due to the presence of theMz symmetry, and it is robust against

the spin-orbit coupling (SOC). The nodal loop will be gapped out if the magnetization is

turned away from the z axis, but interestingly, the emergent gapped state hosts the quantum

anomalous Hall (QAH) effect characterized by the nonzero Chern number (C = ±1). When

the magnetization lies within the crystal plane, a Weyl-like semimetal state, possessing two

nodal points within a mirror plane, emerges. Furthermore, the QAH and magneto-optical

(MO) effects, providing the electric and optical means respectively, are proposed to detect

such rich topological phases in the FM MX MLs. These findings provide a new 2D material

platform hosting the exotic NLHM and QAH states.

Recently, the alkaline-metal monochalcogenides MX aroused considerable attention due

to their unique FM half-metallicity.12–24 Bulk MX exhibit various crystalline phases, such as

CsCl, NiAs, Wurtzite, Zinc-blende, rocksalt structures. In particular, CsS and CsSe with the

CsCl-type structure [Figure S1(a), Supporting Information] are predicted to be most stable

in energy.15,19 Taking CsS as an example, we checked its dynamical stability by calculating

the phonon spectrum, which is free of imaginary frequencies [Figure S1(b)]. Interestingly,

the FM half-metallicity is preserved at the (100), (110), and (111) surfaces of CsS.15 Owing

to a strong interest in 2D ferromagnetism, one may naturally ask: can MX MLs exist and

will they exhibit observable half-metallicity?

We focus on the (111) surface of bulk MX and take CsS a prototypal example because

other MX shares very similar features. As seen from Figure S1(a), the Cs and S atoms

projecting onto the (111) plane are noncoplanar with a buckling height h=1.22 Å. When

extracting the (111) plane from the bulk structure and relaxing the atomic positions in

a slab model, the Cs and S atoms are inclined to form a coplanar structure, as shown in

Figure 1(a). One can see that CsS ML has a hexagonal honeycomb lattice which contains one

Cs atom and one S atom. The relaxed lattice constants of MX MLs and the corresponding
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Figure 1: (a) The top and side views of MX MLs. The large green and small yellow balls
represent M and X atoms, respectively. The blue dashed lines indicate the 2D unit cell.
The mirror plane Mz (marked by pink color) is preserved if the spin magnetic moment
points to the out-of-plane direction (z axis). (b) The phonon spectrum of CsS ML. (c)(d)
The calculated MAE by rotating the spin within zx and xy planes, respectively. The red
solid line in (c) and violet dashed line in (d) represent the fitted curves, i.e., MAE(θ) =
1.32× cos2θ − 0.04× cos4θ and MAE(ϕ) = 0, respectively.
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bulk counterparts are listed in Table S1 (Supporting Information).

The practical feasibility for creating MX MLs has been examined through the following

three important aspects: (i) formation energy; (ii) dynamical stability; (iii) thermal stability.

First of all, the formation energy of MX MLs, defined as the energy (per atom) difference

between ML structure and its bulk phase,25–29 is calculated, and the results listed in Table

S1 show that the experimental synthesis of MX MLs is possible. For example, the formation

energy of CsS ML is 0.27 eV/atom, which is slightly larger than that of ZnO ML (0.19

eV/atom)26 but much smaller than that of silicene (0.76 eV/atom),25 whereas both ZnO ML

and silicene have been recently experimentally synthesized.30,31 Additionally, the dynamical

stability of CsS ML is affirmed by the phonon spectrum, see Figure 1(b). Moreover, the

thermal stability of CsS ML is tested by using the molecular dynamics simulation, and the

planar hexagonal honeycomb lattice maintains up to 100 K, see Figures S1(c) and S1(d).

Magnetic properties are further explored in MX MLs. In the past, the long-range fer-

romagnetic order in low-dimensional systems (e.g., 2D case) has long been considered to

be impossible due to the thermal fluctuations according to the Mermin-Wagner theorem.32

However, this limitation has been challenged by the recent discoveries of intrinsic 2D fer-

romagnets, such as Cr2Ge2Te6,33 CrI3,34 and Fe3GeTe2.35 After doing a spin-polarized cal-

culation, we learned that the spin magnetic moment carried by CsS ML is 1 µB per cell,

being similar to its bulk phase.15 The ferromagnetism is mainly originated from the p or-

bitals of S atom, whereas the spin magnetic moment on Cs atom can be negligible. In order

to confirm this is an FM ground state, we compared the total energies between FM, anti-

ferromagnetic and non-magnetic states in a doubled supercell. The FM state is found to

be more stable than antiferromagnetic and non-magnetic states with the smaller energies

of 7.06 and 139.77 meV/cell, respectively. Moreover, the SOC-induced magnetocrystalline

anisotropy energy (MAE), defined by MAE(θ, ϕ) = E(θ,ϕ)−E(θ=90◦,ϕ=0◦) (where θ and ϕ are

polar and azimuthal angles), is analyzed by rotating the spin within both the zx and xy

planes. Figure 1(c) shows that the MAE of CsS ML in the zx plane can be well fitted by
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an equation MAE = K1cos2θ + K2cos4θ, where K1 (1.32 meV) and K2 (-0.04 meV) are the

magnetocrystalline anisotropy coefficients.36 The positive value of MAE indicates a preferred

magnetization along the x-axis rather than along the z-axis. Figure 1(d) further illustrates

that the MAE is isotropic in the xy plane, suggesting that CsS ML belongs to the category

of XY ferromagnet.28 The maximal value of MAE between out-of-plane and in-plane spin

orientations reaches to 1.28 meV/cell, which is smaller than that of famous 2D ferromagnets

CrI3 (1.37 meV/cell)37 and Fe3GeTe2 (2.76 meV/cell).29 Interestingly, the magnetization di-

rection in 2D ferromagnets can be effectively tuned by applying an external magnetic field,

as experimentally realized in, e.g., Fe3GeTe2.35

Figure 2: (a) The spin polarized band structure of CsS ML. (b) The orbital-projected band
structure of CsS ML. (c) The momentum distribution of the band-crossing nodes near the
Fermi energy. (d) The band structures calculated by the DFT and the effective lattice model.
“+” and “−” mean the eigenvalues ofMz symmetry. SOC is not included in (a-d).

Computed without SOC, the emergent half-metallicity and the fully spin-polarized band
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crossings in MX MLs are discussed. In Figure 2(a), the spin-polarized band structure of CsS

ML is plotted, in which the green solid (blue dashed) lines denote spin-down (spin-up) bands.

One can see that CsS ML is a half-metal in the sense that the spin-down channel is metallic

while the spin-up channel is semiconducting with a gap of about 3.79 eV. Remarkably, the

spin-down bands exhibit two band-crossing nodes at the Fermi energy along the Γ-K and

Γ-M paths, respectively. These bands are primarily derived from px,y and pz orbitals of S

atom, as shown in Figure 2(b). In Figure 2(c), we display the momentum distribution of

the band-crossing nodes, which form a Weyl-like (twofold-degenerate) nodal loop centered

at the Γ point in the first Brillouin zone. Moreover, we calculated the Mz parities for

the valence and conductance bands near the Fermi energy, and the opposite parities of two

crossing bands [see Figure 2(d)] indicate that the gapless nodal loop is protected by the

mirror reflection symmetry.

Considering the SOC effect, the mirror reflection symmetry cannot protect the nodal

loops in non-magnetic materials, referring to the previously predicted 2D NLSs.38–47 Dif-

ferent from the non-magnetic system, the nodal loop in FM CsS ML (with out-of-plane

magnetization) survives after the SOC is turned on, see Figures 3(a) and 3(c). The under-

lying mechanism is that in the case of out-of-plane magnetizationMz is a good symmetry

regardless of SOC, and the unchanged Mz parities of the two crossing bands prevent the

hybridization between px,y and pz orbitals. It shares a similar physical origin as the mixed

nodal lines proposed in Ref. 10.

To capture the main physics in MX ML with and without SOC, we developed an effective

lattice model under a space group of P6m2 (see Supporting Information). The basis functions

are chosen as ψ1 = |px〉, ψ2 = |py〉, and ψ3 = |pz〉 since the three bands near the Fermi energy

are dominated by the p orbitals of S atom. The model parameters, including on-site energy,

hopping integral, and SOC strength, are listed in Table S2. The band structures calculated

by the lattice model Hamiltonian reproduce well the low-energy electronic states obtained

by the first-principles calculations, as shown in Figures 2(d) and 3(a). In addition, we have

8



identified all NLHM candidates in MX MLs, including LiS, LiSe, LiTe, NaSe, and NaTe (see

Figure S2).

Figure 3: (a) The band structures of CsS ML calculated by the DFT and the effective lattice
model with SOC. (b) The calculated Chern number as a function of the magnetization
direction θ (i.e., the polar angle away from the z-axis). (c) The orbital-projected band
structure of CsS ML with SOC. The magnetization in (a) and (c) is considered along the
out-of-plane direction. After SOC is turned on, the nodal loop at the Fermi energy preserves,
whereas two topologically nontrivial band gaps (I and II) arise at the Γ point, in which the
AHC is quantized with the nonzero Chern numbers (C = +1 and C = −1). (d) The band
structures and anomalous Hall conductivities of CsS ML when θ = 0◦, 45◦, and 90◦.

The abundant topological phases are usually expected by tuning the magnetization di-

rection.48–50 We first discuss the situation that rotates the spin within the zx plane (i.e.,

0 ≤ θ ≤ π, ϕ = 0). The corresponding magnetic point groups computed by the isotropy

code51 are listed in Table 1. One can see that the magnetic point group changes with a
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Table 1: The magnetic point groups of MX MLs as a function of the polar (θ) or azimuthal
(ϕ) angles when the spin is rotated within the zx (0 ≤ θ ≤ π, ϕ = 0) or xy (θ = π/2,
0 ≤ ϕ < 2π) planes.

θ or ϕ 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦

zx 6̄m′2′ 2′ 2′ 2′ 2′ 2′ m′m2′ 2′ 2′ 2′ 2′ 2′ 6̄m′2′

xy m′m2′ m′ m′m′2 m′ m′m2′ m′ m′m′2 m′ m′m2′ m′ m′m′2 m′ m′m2′

period of π and only three non-repetitive elements need to be analyzed: 6̄m′2′ (θ = nπ),

m′m2′ [θ = (n + 1/2)π], and 2′ [θ 6= nπ and θ 6= (n + 1/2)π] with n ∈ N. As mentioned

before, when the magnetization direction is out-of-plane [6̄m′2′ (θ = nπ)], the nodal loop

survives because the symmetryMz is not broken. It is well known that the Berry curvature

Ω = [Ωx,Ωy,Ωz] = [Ωyz,Ωzx,Ωxy] is a pseudovector. Moreover, Ωx and Ωy are vanishing in

2D systems and only Ωz (= Ωxy) is relevant for MX MLs. Since Ωxy is an even function

with respect to the mirror operation Mz, the anomalous Hall conductivity (AHC), σxy, is

expected to be nonzero in the case of θ = nπ, as shown in Figure 3(d). When the magne-

tization direction is along the x-axis [θ = (n+ 1/2)π], the group m′m2′ contains the mirror

operationMx, which breaks the nodal loop except for two band crossing points sitting in the

Mx plane, e.g., along the paths from the Γ point to the M and −M points [see Figure 3(d)

and Figure 4]. The symmetryMx forces Ωxy to be zero and consequently, there is σxy = 0

[see Figure 3(d)]. In terminology of Ref. 10 these points present the mixed Weyl points of

type-(i). If θ 6= nπ and θ 6= (n + 1/2)π, the group 2′ does not have any mirror operation,

and therefore all band crossing points are gapped out. Importantly, the group 2′ contains

a T C2y operation (T is the time-reversal symmetry and C2y is the two-fold rotation around

the y-axis), which in principle renders non-vanishing Ωxy. Seen from Figure 3(d), the AHC

σxy is indeed nonzero and strikingly, the quantized value, σxy = e2/h (here, taking θ = 45◦

as an example), suggests a QAH insulator with the Chern number C = +1. The evaluation

of topological phase as a function of the polar angle θ is sketched in Figure 3(b).

Next, we explore the possible topological phases when the spin lies within the xy plane
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Figure 4: (a) The magnetic structures by varying the spin within the xy plane. ϕ is the
azimuthal angle starting from the x-axis. The red dashed lines denote the mirror planes.
(b) The positions of one pair of two-fold degenerated points in the Brillouin zone. (c) The
relativistic band structures along the Γ-M1, Γ-M2, and Γ-M3 paths.
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(θ = π/2, 0 ≤ ϕ < 2π). From Table 1, one can observe that the magnetic point group has

a period of π/3 with respect to ϕ: m′m2′ ⇒ m′ ⇒ m′m′2 ⇒ m′ ⇒ m′m2′. Particularly,

the group m′m2′ (θ = nπ/3) has a mirror plane that is perpendicular to the spin direction,

as shown in Figure 4(a). This mirror plane drives the nodal loop into one pair of two-fold

degenerated points sitting in the mirror plane, see Figures 4(b) and 4(c). If such a mirror

symmetry is absent [m′ and m′m′2, (θ 6= nπ/3)], the nodal loop will be fully gapped out

and the insulating phase is topologically trivial due to the presence of TMz symmetry.

The reason is that Ωxy is odd (even) under the symmetry T (Mz) and thus is odd under

the symmetry TMz. By integrating Ωxy in the entire Brillouin zone, σxy has to be zero,

giving the Chern number C = 0. This is different from the scenario of the QAH insulator

with in-plane magnetization proposed by Liu et al.,48 because in their systems (e.g., LaCl

monolayer) the TMz symmetry lacks.

QAH effect plays an important role in the application of spintronics. Herein, the QAH

state can also be found in CsS ML even the magnetization takes an out-of-plane direction.

After SOC is switched on, two topologically nontrivial band gaps (I and II ) arise at the

Γ point, in which the AHC is quantized with the Chern numbers C = +1 and C = −1

[see Figures 3(a) and 3(c)]. The gap I is close to the Fermi energy and the electrostatic

doping could be used to engineer the electronic state. Indeed, if one hole is doped into CsS

ML, a QAH state appears with a large nontrivial band gap of 86 meV [see Figures 5(a)

and 5(b)]. Note that doping one hole into CsS ML corresponds to a doping concentration of

3.52× 1014 cm−2, which is achievable by the current experimental techniques.52,53 Similar to

CsS, CsP and CsAs host rich bulk phases and exhibit FM half-metallicity on the low-indexed

surfaces.54–59 The dynamical stability of CsP and CsAs MLs has been testified by calculating

their phonon spectra, shown in Figure S3, which indicate the practical feasibility. Since CsP

and CsAs are isostructural to CsS but one hole is less in their native states, we propose that

CsP and CsAs MLs are intrinsic QAH insulators [see Figures 5(a) and 5(b)].

In addition to the anomalous Hall effect, the MO Kerr and Faraday effects, being a
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kind of non-contact (non-damaging) optical technique, are powerful tools for measuring

the magnetism in 2D materials.33,34 Regarding the QAH insulator systems, an additional

magnetoelectric term (Θα/4π2)E·B (here Θ is magnetoelectric polarizability and α = e2/~c

is fine structure constant) should be added into the usual Lagrangian such that the Maxwell’s

equations have to be modified.60 In the low-frequency limit (i.e., ω � Eg/~, where Eg is the

topologically nontrivial band gap), the MO Kerr and Faraday rotation angles are quantized

to θK ' −π/2 and θF ' Cα (C is the Chern number), respectively.8,9 Therefore, by an

optical way, the modern MO techniques have been used to characterize the QAH state.63–66

Figures 5(c) and 5(d) plot the Kerr and Faraday spectra of CsS, CsP, and CsAs MLs, from

which one can clearly find the quantized behaviors of Kerr and Faraday rotation angles in

the low-frequency limit.
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Figure 5: (a) Relativistic band structures, (b) anomalous Hall conductivities, (c) Kerr rota-
tion angles, and (d) Faraday rotation angles of CsS (doped one hole), CsP, and CsAs MLs.
The dashed vertical lines in (c) and (d) denote the topologically nontrivial band gaps. The
α in (d) is fine structure constant.

In conclusion, using the first-principles calculations and an effective lattice model, we pro-
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pose a class of nodal loop half-metal candidates in ferromagnetic alkaline-metal monochalco-

genides MX (M = Li, Na, K, Rb, Cs; X = S, Se, Te) monolayers. The nodal loop is

formed by two crossing bands with the same spin components, and in the case of out-of-

plane magnetization the nodal loop is protected by the symmetryMz that is not influenced

by spin-orbit coupling. The topological phase transition from a nodal loop half-metal, to a

quantum anomalous Hall insulator, and to a Weyl-like semimetal is found by rotating the

spin from the z-axis to the x-axis. For the in-plane magnetization, the Weyl-like semimetal

appears in a period of π/3 starting from the x-axis, and the intermediate phases are topolog-

ically trivial insulators. Moreover, we show that the quantum anomalous Hall state can also

be realized in CsS ML by doping one hole or by replacing S atom with P or As atoms. The

exotic quantum MO Kerr and Faraday effects are expected in CsS, CsP, and CsP MLs. Our

work reveals a kind of novel 2D ferromagnets hosting rich topological phases, which serves

as good candidates for the promising spintronics.

Note added: After completed the bulk of our work, we became aware of two related works

that predict 2D nodal loop half-metals in MnN67 and PtCl3 68 monolayers.
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Details of first-principles calculation

The first-principles density functional theory calculations are performed using the pro-

jected augmented wave method,1 as implemented in the Vienna ab initio simulation pack-

age (vasp).2 The Perdew-Burke-Ernzerhof parameterized generalized-gradient approxima-

tion (PBE-GGA)3 is adopted to treat the exchange-correlation effect. The energy cut-off

of the plane wave with 500 eV and the k-mesh of 25×25×1 are used in the self-consistent

field calculations. The convergence criteria of force and energy are chosen to be 0.005 eV/Å

and 10−8 eV, respectively. A vacuum region with a thickness of 16 Å is used to avoid the

interactions between adjacent slabs. The phonon spectrum is performed based on the den-

sity functional perturbation theory (DFPT).4 A penalty functional is added in order to fix

the direction of the local spin moment. After obtaining the converged ground state charge

density, the mostly localized Wannier functions by projecting the p-orbitals of S atom are

constructed on a k-mesh of 10×10×1, using the wannier90 package.5 Then, the intrinsic

anomalous Hall conductivity is evaluated on an extremely dense k-mesh of 3000×3000×1,

using the Kubo formula,6

σxy = C e
2

h
, (1)

C =
1

2π

∑
n

∫
2D-BZ

Ωn
xy(k)d2k, (2)

Ωn
xy(k) = −

∑
n′ 6=n

2Im 〈ψnk| v̂x |ψn′k〉 〈ψn′k| v̂y |ψnk〉
(ωn′k − ωnk)2

. (3)

Here, C is the Chern number, Ωn
xy(k) is the Berry curvature, vx and vy are velocity operators,

ψnk and ~ωnk = εnk are eigenvector and eigenvalue at the band index n and momentum k,
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respectively.

Extending the anomalous Hall effect to the ac case, the optical Hall conductivity,5

σxy(ω) =
ie2~
NkVc

∑
k

∑
n,m

fmk − fnk
εmk − εnk

〈ψnk|υx|ψmk〉〈ψmk|υy|ψnk〉
εmk − εnk − (~ω + iη)

, (4)

is calculated on the same k-mesh of 3000×3000×1. Here, Vc is the cell volume, Nk is the

number of k-points used for sampling the first Brillouin zone, ~ω is the phonon energy, and

η is the smearing parameter.

The magneto-optical Kerr and Faraday angles in the quantum anomalous Hall insulator

are given by,7

θK =
1

2
(arg{Er

+} − arg{Er
−}), (5)

θF =
1

2
(arg{Et

+} − arg{Et
−}), (6)

where Er,t
± = Er,t

x ± iEr,t
y are the left (+) and right (−) circularly polarized components

of the outgoing reflected (r) and transmitted (t) electric fields. When the thickness of the

quantum anomalous Hall insulators is much shorter than the wavelength of incident light,

the outgoing electric fields can be written as,7

Er
x = [1− (1 + 4πσxx)

2 − (4πσxy)
2]A, (7)

Er
y = 8πσxyA, (8)

Et
x = 4(1 + 2πσxx)A, (9)

Et
y = 8πσxyA, (10)

with A = 1/[(2 + 4πσxx)
2 + (4πσxy)

2]. Here, σxx and σxy are the diagonal and off-diagonal

elements of optical conductivity. In the low-frequency limit (ω → 0), the optical conductivity

in quantum anomalous Hall insulators behaves like σRxx = 0, σIxx = 0, σRxy = Ce2/h, and

σIxy = 0, (C is the Chern number, the superscripts R and I represent the real and imaginary
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parts, respectively). Then, the Equations (5)-(10) can be simplified to,7–9

θK = −tan−1[c/(2πσRxy)] = −tan−1(1/Cα) ' −π/2, (11)

θF = tan−1(2πσRxy/c) = tan(Cα) ' Cα. (12)

Therefore, in the low-frequency limit, the magneto-optical Kerr and Faraday angles in quan-

tum anomalous Hall insulators are quantized to π/2 and Cα, respectively.

Lattice model Hamiltonian

To capture the main physics in MX MLs with and without spin-orbit coupling, we developed

an effective lattice model under the space group P6m2 (No.187). Using the first-principles

calculations, we know that the p orbitals of S atom are the dominant components for the

conduction and valence bands near the Fermi energy. Neglecting SOC first and consider-

ing the three states ψ1 = |px〉, ψ2 = |py〉, and ψ3 = |pz〉 as the bases, the lattice model

Hamiltonian is expressed as:

Hij(k) =
∑
R

eik·Rtij(R), (13)

tij(R) = 〈ψi(R)|H|ψj(r −R)〉 , (14)

where tij denotes the hopping integral between the neighboring sites with a displacement

R, satisfying tij(RRn) = Di(R)tij(Rn)[Dj(R)]†. Here, the Di(R) is the matrix of the ith

irreducible representation. The Hamiltonian can be explicitly written as:

H(k) =


H11 H12 0

H21 H22 0

0 0 H33

 , (15)
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with the matrix elements,

H11 =e1 +
1

2
t11 cos(kx + ky) +

3

2
t22 cos(kx + ky) + 2t11 cos kx +

1

2
t11 cos ky +

3

2
t22 cos ky,

H12 =
1

2

√
3t11 cos(kx + ky) + 2it21 sin(kx + ky)−

1

2

√
3t22 cos(kx + ky),

− 2it21 sin kx −
1

2

√
3t11 cos ky − 2it21 sin ky +

1

2

√
3t22 cos ky,

H22 =e1 +
3

2
t11 cos(kx + ky) +

1

2
t22 cos(kx + ky) + 2t22 cos kx +

3

2
t11 cos ky +

1

2
t22 cos ky,

H33 =e2 + 2r11(cos(kx + ky) + cos kx + cos ky),

Hij =H∗ji.

(16)

The σh mirror plane in D3h point group is responsible for the avoiding hybridization be-

tween px,y and pz orbitals due to their opposite eigenvalues with respect to σh. The model

parameters obtained by fitting the first-principles band structures are listed in Table S2.

Since the topological phase transition can be triggered by changing magnetization direc-

tion, a general direction of spin quantization m, characterized by polar (θ) and azimuthal

(ϕ) angles, is necessary to be considered. Here, the spinors are defined by:

|↑〉m = e−i
ϕ
2 cos

θ

2
|↑〉+ ei

ϕ
2 sin

θ

2
|↓〉 , (17)

|↓〉m = −e−i
ϕ
2 sin

θ

2
|↑〉+ ei

ϕ
2 cos

θ

2
|↓〉 , (18)

where 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, and |↑〉 and |↓〉 are the eigenvectors of spin operator ŝz. The

SOC term of Hamiltonian is written as:

HSOC
ijσσ′ =

ξ

2
〈ψiσ|L · S|ψjσ′〉 . (19)

For the case of ϕ = 0 (i.e., rotating the spin within the zx plane), it turns out be a function
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of polar angle θ,

HSOC =
ξ

2



0 −i cos θ 0 0 i sin θ 1

i cos θ 0 −i sin θ −i sin θ 0 −i cos θ

0 i sin θ 0 −1 i cos θ 0

0 i sin θ −1 0 i cos θ 0

−i sin θ 0 −i cos θ −i cos θ 0 i sin θ

1 i cos θ 0 0 −i sin θ 0


. (20)

There exists three topological phases by varying the polar angle θ in the zx plane: (i) when

θ = nπ (n ∈ N), a nodal loop half-metal protected by Mz symmetry emerges; (ii) when

θ = (n + 1/2)π (n ∈ N), a Weyl-like semimetal, which hosts two nodal points in the plane

normal to the x-axis, appears because the magnetic structure in this case hasMx symmetry;

(iii) when θ 6= nπ and θ 6= (n + 1/2)π (n ∈ N), since all mirror symmetries are broken, the

band crossing points are fully gapped out and the system evolves into a quantum anomalous

Hall state with the Chern number C = ±1.
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Supplementary tables and figures

Table S1: The lattice constants am (ab) and bond lengths dm (db) for the monolayer (bulk)
of alkaline-metal monochalcogenides MX (M = Li, Na, K, Rb, Cs; X = S, Se, Te) as
well as the isostructural CsP and CsAs. The formation energy of monolayer is defined as
Ef = E2D/N2D−E3D/N3D, where E2D (E3D) and N2D (N3D) are total energy and the number
of atoms in monolayer (bulk) structure, respectively. The magnetocrystalline anisotropy
energy (MAE) of monolayer is defined as the energy difference between the out-of-plane and
in-plane magnetization directions.

Structure am ab dm db Ef MAE
(Å) (Å) (Å) (Å) (eV/atom) (meV/cell)

LiS 4.08 3.11 2.36 2.69 0.43 0.48
LiSe 4.30 3.29 2.48 2.85 0.46 5.90
LiTe 4.65 3.60 2.69 3.12 0.43 8.38
NaS 4.70 3.41 2.72 2.95 0.40 0.63
NaSe 4.92 3.57 2.84 3.09 0.46 2.59
NaTe 5.28 3.85 3.05 3.33 0.46 1.55
KS 5.34 3.81 3.08 3.30 0.33 0.59
KSe 5.57 3.95 3.21 3.42 0.36 0.13
KTe 5.96 4.19 3.44 3.63 0.41 -2.14
RbS 5.56 4.01 3.21 3.47 0.29 0.63
RbSe 5.80 4.14 3.35 3.58 0.33 0.18
RbTe 6.21 4.37 3.58 3.79 0.36 -2.14
CsS 5.73 4.22 3.31 3.66 0.27 1.28
CsSe 6.00 4.35 3.46 3.77 0.29 3.59
CsTe 6.45 4.58 3.72 3.97 0.31 -1.41
CsP 5.79 4.22 3.34 3.65 0.28 -0.35
CsAs 5.99 4.31 3.46 3.73 0.31 -9.07
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Table S2: The parameters of the lattice model obtained by fitting the first-principles band
structures. The unit is in eV.

On-site energy e1 -0.070
e2 0.022

Hopping integral

t11 0.043
t22 -0.074
t21 -0.053
r11 0.008

SOC strength ξ -0.069

Figure S1: (a) The crystal structure of bulk MX (M = Li, Na, K, Rb, Cs; X = S, Se, Te).
The (111) plane is highlighted by pink color. The large green and small yellow balls represent
M and X atoms, respectively. The solid yellow circle represents the projection of X atom
onto the (111) plane and h is the bulking height. (b) The phonon spectrum of bulk CsS. (c,d)
The energy evolution of CsS monolayer by employing molecular dynamics simulation at the
temperatures of 50 K and 100 K, respectively. The insets show the snapshots of hexagonal
honeycomb lattice.
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Figure S2: The relativistic band structures of MX MLs with the out-of-plane magnetization.
The candidates of nodal loop half-metal are marked in red font.
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Figure S3: The phonon spectra of CsP and CsAs MLs.
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