000867610 001__ 867610
000867610 005__ 20230426083217.0
000867610 0247_ $$2doi$$a10.1103/PhysRevB.99.104428
000867610 0247_ $$2ISSN$$a0163-1829
000867610 0247_ $$2ISSN$$a0556-2805
000867610 0247_ $$2ISSN$$a1050-2947
000867610 0247_ $$2ISSN$$a1094-1622
000867610 0247_ $$2ISSN$$a1095-3795
000867610 0247_ $$2ISSN$$a1098-0121
000867610 0247_ $$2ISSN$$a1538-4489
000867610 0247_ $$2ISSN$$a1550-235X
000867610 0247_ $$2ISSN$$a2469-9950
000867610 0247_ $$2ISSN$$a2469-9969
000867610 0247_ $$2Handle$$a2128/23568
000867610 0247_ $$2altmetric$$aaltmetric:57677041
000867610 0247_ $$2WOS$$aWOS:000462890400003
000867610 037__ $$aFZJ-2019-06231
000867610 082__ $$a530
000867610 1001_ $$0P:(DE-HGF)0$$aZhou, Xiaodong$$b0
000867610 245__ $$aSpin-order dependent anomalous Hall effect and magneto-optical effect in the noncollinear antiferromagnets Mn 3 X N with X = Ga , Zn, Ag, or Ni
000867610 260__ $$aWoodbury, NY$$bInst.$$c2019
000867610 3367_ $$2DRIVER$$aarticle
000867610 3367_ $$2DataCite$$aOutput Types/Journal article
000867610 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581413942_29859
000867610 3367_ $$2BibTeX$$aARTICLE
000867610 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867610 3367_ $$00$$2EndNote$$aJournal Article
000867610 520__ $$aThe anomalous Hall effect (AHE) and the magneto-optical effect (MOE) are two prominent manifestations of time-reversal symmetry breaking in magnetic materials. Noncollinear antiferromagnets (AFMs) have recently attracted a lot of attention owing to the potential emergence of exotic spin orders on geometrically frustrated lattices, which can be characterized by corresponding spin chiralities. By performing first-principles density functional calculations together with group-theory analysis and tight-binding modeling, here we systematically study the spin-order dependent AHE and MOE in representative noncollinear AFMs Mn3XN(X=Ga, Zn, Ag, and Ni). The symmetry-related tensor shape of the intrinsic anomalous Hall conductivity (IAHC) for different spin orders is determined by analyzing the relevant magnetic point groups. We show that while only the xy component of the IAHC tensor is nonzero for right-handed spin chirality, all other elements—σxy,σyz, and σzx—are nonvanishing for a state with left-handed spin chirality owing to lowering of the symmetry. Our tight-binding arguments reveal that the magnitude of IAHC relies on the details of the band structure and that σxy is periodically modulated as the spin rotates in-plane. The IAHC obtained from first principles is found to be rather large, e.g., it amounts to 359 S/cm in Mn3AgN, which is comparable to other well-known noncollinear AFMs such as Mn3Ir and Mn3Ge. We evaluate also the magnetic anisotropy energy and find that the evolution of spin order is related to the number of valence electrons in the X ion. Interestingly, the left-handed spin chirality could exist in Mn3XN with some particular spin configurations. By extending our analysis to finite frequencies, we calculate the optical isotropy [σxx(ω)≈σyy(ω)≈σzz(ω)] and the magneto-optical anisotropy [σxy(ω)≠σyz(ω)≠σzx(ω)] of Mn3XN. Similar to the IAHC, the magneto-optical Kerr and Faraday spectra depend strongly on the spin order. The Kerr rotation angles in Mn3XN are in the range of 0.3∘∼0.4∘, which is large and comparable to other noncollinear AFMs like Mn3Pt and Mn3Sn. Our finding of large AHE and MOE in Mn3XN suggests that these materials present an excellent antiferromagnetic platform for realizing novel spintronics and magneto-optical devices. We argue that the spin-order dependent AHE and MOE are indispensable in detecting complex spin structures in noncollinear AFMs.
000867610 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000867610 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000867610 536__ $$0G:(DE-Juel1)jiff40_20090701$$aTopological transport in real materials from ab initio (jiff40_20090701)$$cjiff40_20090701$$fTopological transport in real materials from ab initio$$x2
000867610 542__ $$2Crossref$$i2019-03-25$$uhttps://link.aps.org/licenses/aps-default-license
000867610 588__ $$aDataset connected to CrossRef
000867610 7001_ $$0P:(DE-Juel1)161179$$aHanke, Jan-Philipp$$b1
000867610 7001_ $$0P:(DE-Juel1)172699$$aFeng, Wanxiang$$b2$$eCorresponding author
000867610 7001_ $$0P:(DE-HGF)0$$aLi, Fei$$b3
000867610 7001_ $$0P:(DE-HGF)0$$aGuo, Guang-Yu$$b4
000867610 7001_ $$0P:(DE-HGF)0$$aYao, Yugui$$b5
000867610 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b6
000867610 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b7
000867610 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.99.104428$$bAmerican Physical Society (APS)$$d2019-03-25$$n10$$p104428$$tPhysical Review B$$v99$$x2469-9950$$y2019
000867610 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.99.104428$$gVol. 99, no. 10, p. 104428$$n10$$p104428$$tPhysical review / B$$v99$$x2469-9950$$y2019
000867610 8564_ $$uhttps://juser.fz-juelich.de/record/867610/files/PhysRevB.99.104428.pdf$$yOpenAccess
000867610 8564_ $$uhttps://juser.fz-juelich.de/record/867610/files/PhysRevB.99.104428.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867610 909CO $$ooai:juser.fz-juelich.de:867610$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867610 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161179$$aForschungszentrum Jülich$$b1$$kFZJ
000867610 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172699$$aForschungszentrum Jülich$$b2$$kFZJ
000867610 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b6$$kFZJ
000867610 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b7$$kFZJ
000867610 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000867610 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000867610 9141_ $$y2019
000867610 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867610 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867610 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000867610 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000867610 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867610 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867610 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867610 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867610 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867610 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867610 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867610 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867610 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867610 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000867610 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000867610 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000867610 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000867610 980__ $$ajournal
000867610 980__ $$aVDB
000867610 980__ $$aI:(DE-Juel1)IAS-1-20090406
000867610 980__ $$aI:(DE-Juel1)PGI-1-20110106
000867610 980__ $$aI:(DE-82)080009_20140620
000867610 980__ $$aI:(DE-82)080012_20140620
000867610 980__ $$aUNRESTRICTED
000867610 9801_ $$aFullTexts
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.82.1539
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/59/12/003
000867610 999C5 $$1P. M. Oppeneer$$2Crossref$$oP. M. Oppeneer Handbook of Magnetic Materials 2001$$tHandbook of Magnetic Materials$$y2001
000867610 999C5 $$1V. Antonov$$2Crossref$$oV. Antonov Electronic Structure and Magneto-Optical Properties of Solids 2004$$tElectronic Structure and Magneto-Optical Properties of Solids$$y2004
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0031-8914(55)92596-9
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0031-8914(58)93541-9
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.2.4559
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.14915
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.037204
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.82.1959
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.195118
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.195109
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.097203
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1089408
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.016602
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.037204
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.020401
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.12.570
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.9.4897
000867610 999C5 $$1C. Herring$$2Crossref$$oC. Herring Magnetism: A Treatise on Modern Theory and Materials 1966$$tMagnetism: A Treatise on Modern Theory and Materials$$y1966
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.267203
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jacs.7b04911
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.094406
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.7566/JPSJ.87.041008
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.62.R6065
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.116801
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep41078
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.5044594
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.116.256601
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.112.017205
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/108/67001
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.224415
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.075128
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature15723
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/sciadv.1501870
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevApplied.5.064009
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys4181
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.144426
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41566-017-0086-z
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1139/p01-111
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.chemmater.8b01618
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0038-1098(68)90098-7
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.44.781
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/01411598908206858
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/01411599208203457
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.68.172402
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.184414
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.094417
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1468-6996/15/1/015009
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/cm504702m
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.96.024451
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ic300978x
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat4117
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201600310
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.184438
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.97.060401
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0021889804031528
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.155138
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.014403
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2236103
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/TMAG.2008.2001678
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.020403
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0038-1098(82)90159-4
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.51.2478
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.186.891
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.10377
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.51.12633
000867610 999C5 $$1W. Reim$$2Crossref$$oW. Reim Handbook of Magnetic Materials 1990$$tHandbook of Magnetic Materials$$y1990
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.98.125416
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0927-0256(96)00008-0
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.17953
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865
000867610 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2007.11.016