001     867610
005     20230426083217.0
024 7 _ |a 10.1103/PhysRevB.99.104428
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/23568
|2 Handle
024 7 _ |a altmetric:57677041
|2 altmetric
024 7 _ |a WOS:000462890400003
|2 WOS
037 _ _ |a FZJ-2019-06231
082 _ _ |a 530
100 1 _ |a Zhou, Xiaodong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Spin-order dependent anomalous Hall effect and magneto-optical effect in the noncollinear antiferromagnets Mn 3 X N with X = Ga , Zn, Ag, or Ni
260 _ _ |a Woodbury, NY
|c 2019
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581413942_29859
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The anomalous Hall effect (AHE) and the magneto-optical effect (MOE) are two prominent manifestations of time-reversal symmetry breaking in magnetic materials. Noncollinear antiferromagnets (AFMs) have recently attracted a lot of attention owing to the potential emergence of exotic spin orders on geometrically frustrated lattices, which can be characterized by corresponding spin chiralities. By performing first-principles density functional calculations together with group-theory analysis and tight-binding modeling, here we systematically study the spin-order dependent AHE and MOE in representative noncollinear AFMs Mn3XN(X=Ga, Zn, Ag, and Ni). The symmetry-related tensor shape of the intrinsic anomalous Hall conductivity (IAHC) for different spin orders is determined by analyzing the relevant magnetic point groups. We show that while only the xy component of the IAHC tensor is nonzero for right-handed spin chirality, all other elements—σxy,σyz, and σzx—are nonvanishing for a state with left-handed spin chirality owing to lowering of the symmetry. Our tight-binding arguments reveal that the magnitude of IAHC relies on the details of the band structure and that σxy is periodically modulated as the spin rotates in-plane. The IAHC obtained from first principles is found to be rather large, e.g., it amounts to 359 S/cm in Mn3AgN, which is comparable to other well-known noncollinear AFMs such as Mn3Ir and Mn3Ge. We evaluate also the magnetic anisotropy energy and find that the evolution of spin order is related to the number of valence electrons in the X ion. Interestingly, the left-handed spin chirality could exist in Mn3XN with some particular spin configurations. By extending our analysis to finite frequencies, we calculate the optical isotropy [σxx(ω)≈σyy(ω)≈σzz(ω)] and the magneto-optical anisotropy [σxy(ω)≠σyz(ω)≠σzx(ω)] of Mn3XN. Similar to the IAHC, the magneto-optical Kerr and Faraday spectra depend strongly on the spin order. The Kerr rotation angles in Mn3XN are in the range of 0.3∘∼0.4∘, which is large and comparable to other noncollinear AFMs like Mn3Pt and Mn3Sn. Our finding of large AHE and MOE in Mn3XN suggests that these materials present an excellent antiferromagnetic platform for realizing novel spintronics and magneto-optical devices. We argue that the spin-order dependent AHE and MOE are indispensable in detecting complex spin structures in noncollinear AFMs.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
536 _ _ |a Topological transport in real materials from ab initio (jiff40_20090701)
|0 G:(DE-Juel1)jiff40_20090701
|c jiff40_20090701
|f Topological transport in real materials from ab initio
|x 2
542 _ _ |i 2019-03-25
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hanke, Jan-Philipp
|0 P:(DE-Juel1)161179
|b 1
700 1 _ |a Feng, Wanxiang
|0 P:(DE-Juel1)172699
|b 2
|e Corresponding author
700 1 _ |a Li, Fei
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Guo, Guang-Yu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Yao, Yugui
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 6
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 7
773 1 8 |a 10.1103/physrevb.99.104428
|b American Physical Society (APS)
|d 2019-03-25
|n 10
|p 104428
|3 journal-article
|2 Crossref
|t Physical Review B
|v 99
|y 2019
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.99.104428
|g Vol. 99, no. 10, p. 104428
|0 PERI:(DE-600)2844160-6
|n 10
|p 104428
|t Physical review / B
|v 99
|y 2019
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/867610/files/PhysRevB.99.104428.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/867610/files/PhysRevB.99.104428.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:867610
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161179
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172699
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1103/RevModPhys.82.1539
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/59/12/003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 P. M. Oppeneer
|y 2001
|2 Crossref
|t Handbook of Magnetic Materials
|o P. M. Oppeneer Handbook of Magnetic Materials 2001
999 C 5 |1 V. Antonov
|y 2004
|2 Crossref
|t Electronic Structure and Magneto-Optical Properties of Solids
|o V. Antonov Electronic Structure and Magneto-Optical Properties of Solids 2004
999 C 5 |a 10.1016/S0031-8914(55)92596-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0031-8914(58)93541-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.2.4559
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.59.14915
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.037204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.82.1959
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.195118
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.195109
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.103.097203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1089408
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.016602
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.037204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.020401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.12.570
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.9.4897
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 C. Herring
|y 1966
|2 Crossref
|t Magnetism: A Treatise on Modern Theory and Materials
|o C. Herring Magnetism: A Treatise on Modern Theory and Materials 1966
999 C 5 |a 10.1103/PhysRevLett.117.267203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/jacs.7b04911
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.95.094406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.7566/JPSJ.87.041008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.62.R6065
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.116801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep41078
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.5044594
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.116.256601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.112.017205
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/0295-5075/108/67001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.96.224415
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.95.075128
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature15723
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/sciadv.1501870
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevApplied.5.064009
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys4181
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.92.144426
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41566-017-0086-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1139/p01-111
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.chemmater.8b01618
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0038-1098(68)90098-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.44.781
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/01411598908206858
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/01411599208203457
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.68.172402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.184414
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.094417
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1468-6996/15/1/015009
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/cm504702m
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.96.024451
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ic300978x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat4117
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adma.201600310
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.95.184438
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.97.060401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S0021889804031528
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.92.155138
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.95.014403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2236103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1109/TMAG.2008.2001678
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.79.020403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0038-1098(82)90159-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.51.2478
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.186.891
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.50.10377
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.51.12633
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 W. Reim
|y 1990
|2 Crossref
|t Handbook of Magnetic Materials
|o W. Reim Handbook of Magnetic Materials 1990
999 C 5 |a 10.1103/PhysRevB.98.125416
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0927-0256(96)00008-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.50.17953
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.77.3865
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cpc.2007.11.016
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21