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The anomalous Hall effect (AHE) and the magneto-optical effect (MOE) are two prominent manifestations of
time-reversal symmetry breaking in magnetic materials. Noncollinear antiferromagnets (AFMs) have recently
attracted a lot of attention owing to the potential emergence of exotic spin orders on geometrically frustrated
lattices, which can be characterized by corresponding spin chiralities. By performing first-principles density
functional calculations together with group-theory analysis and tight-binding modeling, here we systematically
study the spin-order dependent AHE and MOE in representative noncollinear AFMs Mn3XN (X = Ga, Zn, Ag,
and Ni). The symmetry-related tensor shape of the intrinsic anomalous Hall conductivity (IAHC) for different
spin orders is determined by analyzing the relevant magnetic point groups. We show that while only the xy

component of the IAHC tensor is nonzero for right-handed spin chirality, all other elements—σxy, σyz, and σzx—
are nonvanishing for a state with left-handed spin chirality owing to lowering of the symmetry. Our tight-binding
arguments reveal that the magnitude of IAHC relies on the details of the band structure and that σxy is periodically
modulated as the spin rotates in-plane. The IAHC obtained from first principles is found to be rather large, e.g.,
it amounts to 359 S/cm in Mn3AgN, which is comparable to other well-known noncollinear AFMs such as
Mn3Ir and Mn3Ge. We evaluate also the magnetic anisotropy energy and find that the evolution of spin order is
related to the number of valence electrons in the X ion. Interestingly, the left-handed spin chirality could exist in
Mn3XN with some particular spin configurations. By extending our analysis to finite frequencies, we calculate
the optical isotropy [σxx (ω) ≈ σyy(ω) ≈ σzz(ω)] and the magneto-optical anisotropy [σxy(ω) �= σyz(ω) �= σzx (ω)]
of Mn3XN. Similar to the IAHC, the magneto-optical Kerr and Faraday spectra depend strongly on the spin
order. The Kerr rotation angles in Mn3XN are in the range of 0.3◦ ∼ 0.4◦, which is large and comparable to other
noncollinear AFMs like Mn3Pt and Mn3Sn. Our finding of large AHE and MOE in Mn3XN suggests that these
materials present an excellent antiferromagnetic platform for realizing novel spintronics and magneto-optical
devices. We argue that the spin-order dependent AHE and MOE are indispensable in detecting complex spin
structures in noncollinear AFMs.

DOI: 10.1103/PhysRevB.99.104428

I. INTRODUCTION

The anomalous Hall effect (AHE) [1] and the magneto-
optical effect (MOE) [2–4] are fundamental phenomena in
condensed matter physics and they have become appealing
techniques to detect and measure magnetism by electric and
optical means, respectively. Usually occurring in ferromag-
netic metals, the AHE is characterized by a transverse voltage
drop resulting from a longitudinal charge current in the ab-
sence of applied magnetic fields. There are two distinct contri-
butions to the AHE, that is, the extrinsic one [5–7] depending
on scattering of electron off impurities or due to disorder,
and the intrinsic one [8,9] solely determined by the Berry
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phase effect [10] in a pristine crystal. Both of these mecha-
nisms originate from time-reversal (T ) symmetry breaking in
combination with spin-orbit coupling (SOC) [1]. The intrinsic
AHE can be accurately calculated from electronic-structure
theory on the ab initio level, and examples include studies
of Fe [9,11], Co [12,13], SrRuO3 [14,15], Mn5Ge3 [16], and
CuCr2Se4−xBrx [17]. Referring to the Kubo formula [18,19],
the intrinsic anomalous Hall conductivity (IAHC) can be
straightforwardly extended to the ac case (as given by the
optical Hall conductivity), which is intimately related to
the magneto-optical Kerr and Faraday effects (MOKE and
MOFE) [see Eqs. (7) and (8) below]. Phenomenally, the
MOKE and MOFE refer to the rotation of the polarization
plane when a linearly polarized light is reflected from or
transmitted through a magnetic material, respectively. Owing
to their similar physical nature, the intrinsic AHE is often
studied together with MOKE and MOFE.
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As the AHE and the MOE are commonly considered to
be proportional to the magnetization, most of the materials
studied to date with respect to these phenomena are ferromag-
nets (FMs) and ferrimagnets (FiMs), while antiferromagnets
(AFMs) are naively expected to have neither AHE nor MOE
due to their vanishing net magnetization. Although T symme-
try is broken in AFMs, its combination T S with other spatial
symmetries S (e.g., fractional translations or inversion) can
reinstate Kramers theorem such that AHE and MOE vanish. A
simple example is the one-dimensional collinear bipartite an-
tiferromagnet [20], where S is the fractional translation by half
of the vector connecting the two sublattices. Another example
is the two-dimensional honeycomb lattice with collinear Néel
order (as realized, e.g., in the bilayer MnPSe3) [21], which has
natively the combined symmetry T I although time-reversal
symmetry T and spatial inversion symmetry I are both broken
individually. The application of an electric field perpendicular
to the film plane will manifest in broken T I symmetry and
band exchange splitting that generates the MOKE [21]. Such
electrically driven MOKE has been realized, e.g., in multifer-
roic Cr-based metallorganic perovskites [22]. Therefore, the
AHE and the MOE, as the most fundamental fingerprints of T

symmetry breaking in matter can, in principle, exist in AFMs
if certain crystal symmetries are absent, even though the net
magnetization vanishes. Notably, the cluster multipole theory
proposed by Suzuki et al. [23,24] has been recently applied to
interpret the origin of AHE in AFMs.

Leaving aside collinear AFMs, recent works [25–40] re-
vealed that noncollinear AFMs can also host nonvanish-
ing AHE and MOE. Two types of noncollinear AFMs
can be considered: noncoplanar and coplanar, which are
characterized by scalar and vector spin chiralities, respec-
tively [41]. On the one hand, the nonzero scalar spin chirality
χ = Si · (S j × Sk ) (where Si, S j , and Sk denote three neigh-
boring noncoplanar spins) will generate a fictitious magnetic
field that makes the electrons feel a real-space Berry phase
while hopping in the spin lattice [25,26]. Consequently, the
AHE can emerge in noncoplanar AFMs without SOC, which
is referred to the topological Hall effect that has been theo-
retically predicted [26,27] and experimentally observed [28],
for instance, in disordered γ -FexMn1−x alloys. Moreover, the
quantized version of the topological Hall effect was reported
in the layered noncoplanar noncollinear K0.5RhO2 AFM insu-
lator [29]. Extending these findings, Feng et al. [30] proposed
that topological MOE and quantum topological MOE exist in
γ -FexMn1−x and K0.5RhO2, respectively.

Instead of the scalar spin chirality (which vanishes
for coplanar spin configurations), the finite vector spin
chirality [41]

κ =
2

3
√

3

∑
〈i j〉

[Si × S j]z, (1)

where 〈i j〉 runs over the nearest-neighboring spins, is an
important quantity in coplanar noncollinear AFMs such as
cubic Mn3X (X = Rh, Ir, Pt) and hexagonal Mn3Y (Y = Ge,
Sn, Ga). The Mn atoms in the (111) plane of Mn3X and
in the (0001) plane of Mn3Y are arranged into a kagome
lattice, while Mn3X and Mn3Y have opposite vector spin
chiralities [34] with κ = +1 (right-handed state) and κ = −1

(left-handed state) [see Figs. 1(a) and 1(b)], respectively. The
concept of right- and left-handed states adopted here follows
the convention of Ref. [41]. For both right- and left-handed
spin chiralities, the spins can be simultaneously rotated within
the plane, further resulting in different spin configurations
[see Figs. 1(a) and 1(b)], e.g., the T1 and the T2 phases in
Mn3X [39] as well as the type-A and the type-B phases in
Mn3Y [33]. The vector spin chirality and the spin rotation
discussed here allow us to characterize coplanar AFMs that
have a 120◦ noncollinear magnetic ordering. For the AHE,
Chen et al. [31] discovered theoretically that Mn3Ir has
unexpectedly large IAHC and several other groups predicted
the IAHC in Mn3Y with comparable magnitudes [32–34]. At
the same time, the AHE in Mn3Y has been experimentally
confirmed [35–38]. Because of the close relationship to AHE,
Feng et al. [39] first predicted that large MOKE can emerge in
Mn3X even though the net magnetization is zero. Eventually,
Higo et al. [40] successfully measured large zero-field Kerr
rotation angles in Mn3Sn at room temperature.

In addition to Mn3X and Mn3Y , the antiperovskite Mn3XN
(X = Ga, Zn, Ag, Ni, etc.) is another important class of
coplanar noncollinear AFMs [42], which was known since the
1970s [43,44]. Compared to Mn3X , the X atoms in Mn3XN
also occupy the corners of the cube [see Fig. 1(c)] and the
face-centered Mn atoms are arranged into a kagome lattice in
the (111) plane [see Fig. 1(d)], while there is an additional
N atom located in the center of the cube [see Fig. 1(c)].
Despite the structural similarity, some unique physical prop-
erties have been found in Mn3XN, such as magnetovolume
effects [45–52] and magnetocaloric effects [53–56] that stem
from a strong coupling between spin, lattice, and heat. The
most interesting discovery in Mn3XN may be the giant neg-
ative thermal expansion that was observed in the first-order
phase transition from a paramagnetic state to a noncollinear
antiferromagnetic state with decreasing temperature T. Below
the Néel temperature (TN), a second-order phase transition
between two different noncollinear antiferromagnetic states,
which are featured by a nearly constant volume but the change
of spin configuration, possibly occurs.

Taking Mn3NiN as an example [44], all the spins point
along the diagonals of the face if T < 163 K (the so-called
Ŵ5g configuration), while in the temperature range of 163 K
< T < 266 K the spins can point to the center of the triangle
formed by three nearest-neighboring Mn atoms (the so-called
Ŵ4g configuration). The Ŵ5g and the Ŵ4g spin configurations
are named as R1 (θ = 0◦) and R3 (θ = 90◦) phases in this
work [see Figs. 1(e) and 1(g), where the azimuthal angle θ

measures the rotation of the spins starting from the diago-
nals of the face], respectively. An intermediate state (0◦ <

θ < 90◦) between the R1 and R3 phases, referred to as the
R2 phase [see Fig. 1(f) with θ = 30◦ as an example], was
proposed to exist [45,46]. Such nontrivial magnetic orders are
also believed to occur in other Mn3XN compounds [43–46],
as recently clarified by Mochizuki et al. [57] using a classical
spin model together with the replica-exchange Monte Carlo
simulation. However, the details of the changes in spin con-
figurations from R1 phase, passing through the R2 phase to
R3 phase, and how they affect the relevant physical properties
(e.g., AHE and MOE) are still unclear. Moreover, although
only the right-handed spin chirality was reported in the

104428-2



SPIN-ORDER DEPENDENT ANOMALOUS HALL EFFECT … PHYSICAL REVIEW B 99, 104428 (2019)

FIG. 1. (a) Right-handed (κ = +1) and (b) left-handed (κ = −1) vector spin chiralities in coplanar noncollinear spin systems. The open
arrows indicate the clockwise rotation of spin with a uniform angle, which results in a different spin configuration with the same spin chirality.
(c) The crystal and magnetic structures of Mn3XN (X = Ga, Zn, Ag, and Ni). The purple, green, and blue balls represent Mn, X , and N atoms,
respectively. The spin magnetic moments originate mainly from Mn atoms, while the spin polarization of X and N atoms is negligible. The
spins on three Mn sublattices (Mn1, Mn2, and Mn3) are indicated by red arrows that are aligned within the (111) plane (here, the right-handed
spin chirality is shown as an example). The angles between neighboring spins are always 120◦, while the spins can simultaneously rotate within
the (111) plane that is characterized by an azimuthal angle θ away from the diagonals of the face. (d) The (111) plane of Mn3XN, which can
be regarded as a kagome lattice of Mn atoms. The dotted lines mark the two-dimensional unit cell. (e)–(g) The R1, R2, and R3 phases with the
right-handed spin chirality. There are one three-fold rotation axis [C3, which is along the [111] direction (z axis)], three two-fold rotation axes
(C (1)

2 , C
(2)
2 , and C

(3)
2 ), and three mirror planes (M (1), M (2), and M (3)) in the R1 phase; only C3 axis is preserved in the R2 phase; the time-reversal

symmetry T has to be combined with a two-fold rotation and mirror symmetries in the R3 phase. (h)–(j) The L1, L2, and L3 phases with the
left-handed spin chirality. There are one two-fold rotation axis (C2) and one mirror plane (M) in the L1 phase; the time-reversal symmetry T is
combined with two-fold rotation and mirror symmetries in both the L2 and the L3 phases.

previous literature, the left-handed spin chirality as a coun-
terpart [Figs. 1(h) to 1(j)] could also exist, e.g., in Mn3NiN,
because of the favorable total energy for a particular θ [see
Fig. 4(a)].

In this work, using first-principles density functional the-
ory together with group-theory analysis and tight-binding
modeling, we systematically investigate the effect of spin or-

der on the intrinsic AHE as well as the MOKE and the MOFE
in coplanar noncollinear AFMs Mn3XN (X = Ga, Zn, Ag,
and Ni). The spin order considered here has dual implications,
i.e., spin chiralities (right- and left-handed states) and spin
configurations [regarding the different spin orientations by
simultaneously rotating the spins within the (111) plane]. In
Sec. II, we first identify the antisymmetric shape of the IAHC
tensor (i.e., zero and nonzero elements) for different spin or-
ders by a group theoretical analysis. For the right-handed spin
chirality, only σxy is nonzero (except for two particular spin
configurations: θ = 0◦ and 180◦); for the left-handed spin chi-
rality, all three off-diagonal elements (σxy, σyz, and σzx) can be
nonzero (except for some particular spin configurations, e.g.,
θ = 0◦ and 60◦ for σxy, θ = 30◦ and 210◦ for σyz, θ = 120◦

and 300◦ for σzx). The results of the group-theory analysis are
further confirmed by both tight-binding modeling (Sec. III)
and first-principles calculations (Sec. IV B). In addition to the
IAHC, the magnetic anisotropy energy (MAE) has also been
accessed and the in-plane easy spin orientation is determined
(Sec. IV B).

Considering Mn3NiN as a prototype, we extend the
study of IAHC to the optical Hall conductivity [σxy(ω),
σyz(ω) σzx(ω)] as well as the corresponding diagonal elements

[σxx(ω), σyy(ω), and σzz(ω)] (Sec. IV C). The spin order
hardly affects the diagonal elements, whereas a significant
dependence on the spin order is observed in the off-diagonal
elements akin to the IAHC. Subsequently in Sec. IV D, the
MOKE and the MOFE are computed from the optical con-
ductivity for all Mn3XN (X = Ga, Zn, Ag, and Ni). Kerr
and Faraday spectra exhibit a distinct dependence on the spin
order, which they inherit from the optical Hall conductivity.
The computed Kerr and Faraday rotation angles in Mn3XN
are comparable to the ones in Mn3X studied in our previous
work [39]. The magneto-optical anisotropy, originating from
the nonequivalent off-diagonal elements of optical conductiv-
ity, is explored for both right- and left-handed spin chiralities.
Finally, the summary is drawn in Sec. V. Our work reveals
that the AHE and the MOE depend strongly on the spin order
in noncollinear AFMs Mn3XN which suggests that complex
noncollinear spin structures can be uniquely classified in
experiments by measuring AHE and MOE.

II. GROUP THEORY ANALYSIS

In this section, we determine the magnetic space and point
groups of Mn3XN for given spin orders, and then identify the
nonzero elements of IAHC from group theory. The magnetic
groups computed with the ISOTROPY code [58,59] are listed
in Table I, from which one can observe that the magnetic
groups vary in the azimuthal angle θ with a period of π

for right-handed spin chirality, but with a period of π/3 for
left-handed spin chirality. This indicates that the magnetic
groups that need to be analyzed are limited to a finite number.
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Furthermore, it is sufficient to restrict the analysis to magnetic
point groups since the IAHC [9,18,19]

σαβ = −
e2

h̄

∫
BZ

d3k

(2π )3
�αβ (k) (2)

is translationally invariant. In the above expression �αβ (k) =∑
n fn(k)�n,αβ (k) is the momentum-space Berry curvature,

with the Fermi-Dirac distribution function fn(k) and the band-
resolved Berry curvature

�n,αβ (k) = −2Im
∑
n′ �=n

〈ψnk|v̂α|ψn′k〉〈ψn′k|v̂β |ψnk〉
(ωn′k − ωnk)2

. (3)

Here v̂α is the velocity operator along the αth Cartesian di-
rection, and ψnk (h̄ωnk = ǫnk) is the eigenvector (eigenvalue)
to the band index n and the momentum k. Since the IAHC
and the Berry curvature can be regarded as pseudovectors,
just like spin, their vector-form notations σ = [σ x, σ y, σ z] =
[σyz, σzx, σxy] and �n = [�x

n,�
y
n,�

z
n] = [�n,yz,�n,zx,�n,xy]

are used here for convenience.
Let us start with the right-handed spin chirality by consid-

ering the three nonrepetitive magnetic point groups: 3̄1m [θ =
nπ ], 3̄1m′ [θ = (n + 1

2 )π ], and 3̄ [θ �= nπ and θ �= (n + 1
2 )π ]

with n ∈ N (see Table I). First, 3̄1m belongs to the type-I
magnetic point group, i.e., it is identical to the crystallographic
point group D3d . As seen from Fig. 1(e), it has one three-fold
rotation axis (C3), three two-fold rotation axes (C(1)

2 , C
(2)
2 ,

and C
(3)
2 ) and three mirror planes (M (1), M (2), and M (3)).

As mentioned before, �n is a pseudovector, and the mirror
operation M (1) (parallel to the yz plane) changes the sign of
�

y
n and �z

n, but preserves �x
n. This indicates that �

y
n and �z

n

are odd functions along the kx direction in momentum space,
while �x

n is an even function. Correspondingly, integrating
the Berry curvature over the entire Brillouin zone should give
σ = [σ x, 0, 0]. The role of C

(1)
2 is the same as that of M (1). The

other two mirror (two-fold rotation) symmetries are related
to M (1) (C(1)

2 ) by the C3 rotation, which transforms [σ x, 0, 0]

into [− 1
2σ x,−

√
3

2 σ x, 0] and [− 1
2σ x,

√
3

2 σ x, 0]. Therefore, all
components of IAHC are zero, i.e., σ = [0, 0, 0], owing to the
symmetries of the group 3̄1m. Second, 3̄ is also a type-I mag-
netic point group, which is identical to the crystallographic
point group C3i. Compared to D3d , all C2 and M operations
are absent whereas only the C3 operation is left [see Fig. 1(f)].
In this situation, the components of σ that are normal to the
C3 axis disappear due to the cancellations of �x

n and �
y
n in the

kx–ky plane. This gives rise to σ = [0, 0, σ z]. Finally, 3̄1m′ =
C3i ⊕ T (D3d − C3i ) is a type-III magnetic point group as it
contains operations combining time and space symmetries.
Here, T (D3d − C3i ) is the set of three T M and three TC2

operations depicted in Fig. 1(g). With respect to the mirror
symmetry M (1), �x

n is even but �
y
n and �z

n are odd; with
respect to the time-reversal symmetry T , all of �x

n, �
y
n, and

�z
n are odd; hence, with respect to the T M (1) symmetry, �x

n

is odd but �
y
n and �z

n are even, resulting in σ = [0, σ y, σ z].
TC

(1)
2 plays the same role, just like T M (1) does. The other two

T M (TC2) symmetries are related to T M (1) (TC
(1)
2 ) by the

C3 rotation in the subgroup C3i, which forces σ y to be zero but
allows finite σ z. Thus, the IAHC tensor shape is σ = [0, 0, σ z]
in the magnetic point group 3̄1m′. To summarize, for the
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right-handed spin chirality only σ z can be nonzero, except for
θ = nπ where all components of the IAHC vanish.

Next we turn to the left-handed spin chirality, which
also has three nonrepetitive magnetic point groups: 2/m [θ =
n π

3 ], 2′/m′ [θ = (n + 1
2 )π

3 ], and 1̄ [θ �= n π
3 and θ �= (n +

1
2 )π

3 ] with n ∈ N (see Table I). First, 2/m belongs to the
type-I magnetic point group, which is identical to the crys-
tallographic point group C2h that contains one two-fold ro-
tation axis (C2) and one mirror plane (M) [see Fig. 1(h)].
As mentioned before, the M symmetry allows only for those
components of the IAHC that are perpendicular to the mirror
plane (i.e., along the current C2 axis), therefore, σ z should
be always zero but σ x and σ y are generally finite for θ =
0◦ (for current Cartesian coordinates). If θ = 2π

3 or 5π
3 , the

mirror plane is parallel to the yz plane and renders only σ x

potentially nonzero. Similarly, 1̄ is also a type-I magnetic
point group that is identical to the crystallographic group Ci.
Since all components �x

n, �
y
n, and �z

n are even with respect
to the spatial inversion symmetry I , the group Ci imposes
no restrictions on the shape of σ, allowing all components
to be finite. Finally, 2′/m′ = Ci ⊕ T (C2h − Ci ) is a type-III
magnetic point group containing one T M and one TC2 op-
eration [see Figs. 1(i) and 1(j)]. There are two scenarios: if
θ = π

6 [Fig. 1(i)], T M (or TC2) symmetry forces σ x to vanish
but facilitates nonzero σ y and σ z; if θ = π

2 [Fig. 1(j)], the
principal axis of both symmetry operations changes (M is
neither parallel to yz nor zx plane) such that all entries σ x,
σ y, and σ z are finite. The other cases of θ = 7π

6 and 5π
6 are

identical to θ = π
6 and π

2 , respectively. In summary, all tensor
components of σ are allowed (except for some particular
θ ) for the left-handed spin chirality owing to the reduced
symmetry as compared to the systems with right-handed spin
chirality.

In the above discussion, all zero and potentially nonzero
elements of the IAHC tensor are identified based on the
underlying magnetic point groups. Alternatively, these results
can also be obtained by following the Neumann principle,
i.e., by applying all symmetry operations of the corresponding
point group to the conductivity tensor [60]. This method has
been implemented in a computer program [61,62], which
generates the shape of linear response tensors (IAHC or
intrinsic spin Hall conductivity) in a given coordinate sys-
tem. Another useful analysis tool is the so-called cluster
multipole theory [23,24], which is capable of uncovering the
hidden AHE in AFMs by evaluating the cluster multipole
moment that behaves as a macroscopic magnetic order. For
instance, although the cluster dipole moments (i.e., the net
magnetization from the conventional understanding) vanish
in noncollinear AFMs (e.g., Mn3X and Mn3Y ), the emerging
cluster octupole moments lead to a finite AHE.

III. TIGHT-BINDING MODEL

Group theory is particularly powerful to identify the tensor
shape of the IAHC, but it provides no insights into the magni-
tude of the allowed elements, which will depend strongly on
details of the electronic structure. In this light, tight-binding
models and first-principles calculations are valuable tools to
arrive at quantitative predictions. In this section, we consider a
double-exchange s-d model that describes itinerant s electrons

interacting with local d magnetic moments on the kagome
lattice, which refers to the (111) plane of cubic Mn3XN.
Following Ref. [31], the Hamiltonian is written as

H = t
∑
〈i j〉α

c
†
iαc jα − J

∑
iαβ

(ταβ · Si )c
†
iαciβ

+ itSO

∑
〈i j〉αβ

νi j (ταβ · ni j )c
†
iαciβ , (4)

where c
†
iα (ciα) is the electron creation (annihilation) operator

on site i with spin α, and τ is the vector of Pauli matrices, and
〈i j〉 restricts the summation to nearest-neighbor sites. The first
term is the nearest-neighbor hopping with the transfer integral
t . The second term is the on-site exchange coupling between
the conduction electron and the localized spin moment Si,
and J is the Hund’s coupling strength. The third term is the
SOC effect with coupling strength tSO, νi j is the antisymmetric
two-dimensional (2D) Levi-Civita symbol (with ν12 = ν23 =
ν31 = 1), and ni j is an in-plane vector perpendicular to the line
from site j to site i [31]. In the following calculations, we set
J = 1.7t and tSO = 0.2t .

We first discuss the band structure, the IAHC, and the
Berry curvature of the system with right-handed spin chirality
(κ = +1), plotted in Figs. 2(a), 2(c), and 2(d) to 2(g), respec-
tively. The band structure significantly changes from θ = 0◦

(R1 phase, 3̄1m), to 30◦ (R2 phase, 3̄), and to 90◦ (R3 phase,
3̄1m′). If θ = 0◦, two band crossings around 1.8 eV appear at
the K point and along the M-K path, respectively. This band
structure is identical to the one without SOC [31] because the
SOC term in Eq. (4) plays no effect in the spin configuration
of θ = 0◦ in the sense that the left-handed and right-handed
environments of an electron hopping between nearest neigh-
bors are uniform. Accordingly, the Berry curvature �xy(k)
vanishes everywhere in the Brillouin zone [Fig. 2(d)]. The
band degeneracy is split when θ �= 0◦ and with increasing
θ , the band gap at the K point enlarges significantly, while
the one at the M point shrinks slightly. To disentangle the
dependence of the IAHC on the band structure, the IAHC is
calculated at different Fermi energies (EF ) including 1.8, 0,
and −1.8 eV, shown in Fig. 2(c). In all three cases, the IAHC
exhibits a period of 2π in θ , and the values for EF = ±1.8 eV
are two orders of magnitude larger than the ones at EF = 0 eV.
The large IAHC originates from the small band gap at the
M point since the Berry curvature shows sharp peaks there
[see Figs. 2(e) to 2(g)]. For EF = −1.8 and 0 eV, the largest
IAHC occurs for θ = 90◦ and 270◦. The case of EF = 1.8 eV
is special since the IAHC is quantized to ±2e2/h̄ in a broad
range of θ , revealing the presence of quantum anomalous Hall
state in coplanar noncollinear AFMs.

For the left-handed spin chirality (κ = −1), the band
structure, the IAHC, and the Berry curvature are plotted in
Figs. 2(b), 2(c), and 2(h) to 2(k), respectively. The band
structure hardly changes from θ = 0◦ (2/m), to 15◦ (1̄), and to
30◦ (2′/m′). If θ = 0◦, the Berry curvature �xy(k) is odd for
the group 2/m [Fig. 2(h)] such that the IAHC σxy is zero when
integrating the �xy(k) over the entire Brillouin zone. With
increasing θ , the IAHC reaches its maximum at θ = 30◦ and
exhibits a period of 2π

3 [Fig. 2(c)]. Similarly to the κ = +1
state, the IAHC at EF = ±1.8 eV is two orders of magnitude
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FIG. 2. (a) Band structures of the kagome lattice with the spin orders κ = +1 and θ = 0◦, 30◦, 90◦. (b) Band structures of the kagome
lattice with the spin orders κ = −1 and θ = 0◦, 15◦, 30◦. (c) IAHC of the kagome lattice as a function of θ for κ = ±1 states for the three
positions of the Fermi energy EF at 1.8 eV (top panel), 0 eV (middle panel), and −1.8 eV (bottom panel). The curves of the κ = −1 state
(green lines) are scaled by a factor of 10. (d)–(g) Berry curvature �xy(k) with κ = +1 and θ = 0◦, 30◦, 90◦, 270◦ at EF = −1.8 eV. (h)–(k)
Berry curvature �xy(k) with κ = −1 and θ = 0◦, 15◦, 30◦, 90◦ at EF = −1.8 eV. Dotted lines in panels (d)–(k) indicate the first Brillouin
zone.

larger than at EF = 0 eV. However, the IAHC of κ = −1
state is much smaller than that of κ = +1 state [Fig. 2(c)].
This is understood based on the Berry curvature shown in
Figs. 2(i) to 2(k), which reveals that �xy(k) at the three M

points has different signs (two negative and one positive, or
two positive and one negative) due to the reduced symmetry
in the κ = −1 state, in contrast to the same sign in the κ = +1
state [Figs. 2(e) to 2(g)].

The tight-binding model used here is constructed on a
two-dimensional kagome lattice for which the σyz and σzx

components vanish. Although the model is rather simple, the
following qualitative results are useful: (1) the IAHC turns
out to be large if the Fermi energy lies in a small band gap as
outlined in previous theoretical work [9]; (2) σxy has a period
of 2π ( 2π

3 ) in θ for right-handed (left-handed) spin chirality;
(3) For structures with right-handed spin chirality, σxy is much
larger than for the left-handed case.

IV. FIRST-PRINCIPLES CALCULATIONS

In this section, by computing explicitly the electronic struc-
ture of the Mn3XN compounds with different spin orders, we
first demonstrate that key properties of these systems follow
the qualitative conclusions drawn from the discussed tight-
binding model. Then we present the values of the computed
magnetic anisotropy energy (MAE) and the IAHC of the
Mn3XN compounds. The obtained in-plane easy spin orien-
tations are comparable to the previous reports [57], while the
IAHC is found to depend strongly on the spin order, in agree-
ment with the above tight-binding results. Taking Mn3NiN as
an example, we further discuss the longitudinal and transverse
optical conductivity, which are key to evaluating the MOE.
Finally, the spin-order dependent MOKE and MOFE as well
as their anisotropy are explored. Computational details of the
first-principles calculations are given in the Appendix.
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FIG. 3. The first-principles band structures of (a,b) Mn3ZnN and
(c,d) Mn3NiN for different spin orders (θ = 0◦, 30◦, and 90◦ for the
right-handed state with κ = +1, and θ = 0◦, 15◦, and 30◦ for the
left-handed state of opposite spin chirality). The k-path lies within
the (111) plane.

A. Electronic structure

Figure 3 illustrates the first-principles band structures of
the Mn3XN systems, taking Mn3ZnN and Mn3NiN as two
prototypical examples. While the electronic structure of the
left-handed state with κ = −1 hardly changes as the spin-
rotation angle θ is tuned, the right-handed state of oppo-
site vector spin chirality is rather sensitive to details of
the noncollinear spin configuration. Specifically, the calcu-
lated electronic structure for the κ = +1 state reveals that
the band degeneracy (e.g., at the Ŵ point) is lifted for
θ �= 0◦, and the magnitude of the band splitting increases
with the spin-rotation angle. These features are in a very
good qualitative agreement with the tight-binding results
[see Figs. 2(a) and 2(b)], which roots in the fact that the
(111) planes of Mn3XN compounds and the 2D Kagome
lattice considered in the previous sections have common
symmetries.

B. Intrinsic anomalous Hall conductivity and magnetic

anisotropy energy

The MAE is one of the most important parameters that
characterizes a magnetic material. In FMs, the MAE refers
to the total energy difference between easy- and hard-axis
magnetization directions. In the noncollinear AFMs that we
consider here, we define the MAE as the total energy differ-
ence between different spin orders, given by

MAE(θ ) = Eκ=±1,θ �=0◦ − Eκ=+1,θ=0◦ , (5)

where the spin order with κ = +1 and θ = 0◦ is set as the
reference state. The calculated MAE of Mn3XN is plotted
in Fig. 4(a). For the κ = +1 state, the MAE can be fitted
well to the uniaxial anisotropy Keff sin2(θ ), where Keff is the
magnetic anisotropy constant listed in Table II. Compared
to traditional Mn-based alloys, the value of Keff in Mn3XN
is comparable in magnitude MnPt (0.51 meV/cell) [63],
MnPd (−0.57 meV/cell) [63], MnNi (−0.29 meV/cell) [63],
and MnRh (−0.63 meV/cell) [63], but are one order of

FIG. 4. (a) Magnetic anisotropy energy of Mn3XN (X = Ga,
Zn, Ag, and Ni) as a function of the azimuthal angle θ . The
results for left-handed spin chirality (κ = −1) are only shown in
Mn3ZnN and Mn3NiN as the representatives. The solid and dotted
lines are expressed by MAE(θ ) = Keff sin2(θ ) and MAE = Keff/2,
respectively. (b), (c) The IAHC of Mn3ZnN and Mn3NiN as a
function of the azimuthal angle θ for both right-handed (κ = +1)
and left-handed (κ = −1) spin chiralities. The solid and dotted lines
are the polynomial fits to the data.

magnitude smaller than in MnIr (−7.05 meV/cell) [63],
Mn3Pt (2.8 meV/cell) [64], and Mn3Ir (10.42 meV/cell) [65].
For the κ = −1 state, the MAE is approximately constant with
a value of Keff/2, indicating the vanishing in-plane anisotropy

TABLE II. Magnetic anisotropy constant (Keff) and the maxi-
mum of IAHC for Mn3XN (X = Ga, Zn, Ag, and Ni). The IAHC
is listed in the order of σyz, σzx , and σxy. For the κ = +1 state, σxy

reaches its maximum at θ = 90◦. For the κ = −1 state, σyz, σzx , and
σxy reach their maxima at θ = 120◦, 30◦, and 30◦, respectively.

Keff (meV/cell) IAHC (S/cm)

System κ = +1 κ = −1 κ = +1 κ = −1

Mn3GaN 0.52 0.26 0, 0, −99 59, −67, −5

Mn3ZnN 0.43 0.21 0, 0, −232 156, −174, 23

Mn3AgN 0.15 0.08 0, 0, −359 344, −314, 72

Mn3NiN −0.18 −0.09 0, 0, −301 149, −134, 5
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energy that leads to a relatively easy rotation of the spins
within the (111) plane. This feature has also been found in
other noncollinear AFMs such as Mn3Ir [65], Mn3Ge [66],
and Mn3Sn [35,66,67].

Figure 4(a) reveals that MAE(θ ) = MAE(θ + π ), imply-
ing that the ground state of 120◦ triangular spin order has
a discrete two-fold degeneracy [31]. For the κ = +1 state,
Mn3GaN and Mn3ZnN obviously prefer the R1 phase (θ = 0◦

or 180◦), which is in full accordance with the Ŵ5g spin configu-
ration identified in Ref. [57] using a classical spin model with
frustrated exchange interactions and magnetic anisotropy. As
the spin configuration is closely related to the number of va-
lence electrons nν in the X ion, Mochizuki et al. [57] proposed
a mixture of the Ŵ5g and the Ŵ4g spin patterns in Mn3AgN and
Mn3NiN due to the smaller nν (weaker X -ion crystal field)
as compared to that of Mn3GaN and Mn3ZnN. In the present
calculations, Mn3AgN still hosts the Ŵ5g spin configuration,
but has a much smaller MAE compared to Mn3GaN and
Mn3ZnN, while Mn3NiN favors the Ŵ4g spin configuration
(R3 phase, θ = 90◦ or 270◦). Our calculated MAE is a mono-
tonic function of nν , i.e., Ni (nν = 0) < Ag (nν = 1) < Zn
(nν = 2) < Ga (nν = 3), which provides a clear interpretation
for the systematic evolution of the magnetic orders in Mn3XN.
On the other hand, the κ = −1 state of Mn3XN has not been
considered in previous works, while we find that it could exist
for particular values of θ . For example, the κ = −1 state in
Mn3NiN has the favorable energy in three segments of θ :
[0◦, 45◦), (135◦, 225◦), and (315◦, 360◦]. In light of recent ex-
periments on Mn3Sn [35,38] and Mn3Ge [36,37], an external
magnetic field may be used to tune the spin orientation by
coupling to the weak in-plane magnetic moment. This finding
enriches the spectrum of possible magnetic orders in Mn3XN
compounds.

The IAHC of Mn3ZnN and Mn3NiN with different spin
orders is illustrated in Figs. 4(b) and 4(c), respectively. The
component σxy displays a period of 2π ( 2π

3 ) in θ for the
κ = +1 (κ = −1) state, and its magnitude in the κ = +1 state
is much larger than that of the κ = −1 state, in excellent
agreement with the tight-binding results. From the group
theoretical analysis we showed that σyz and σzx are allowed
in κ = −1 state, which is confirmed by our first-principles
results. Moreover, we observe that both σyz and σzx display
a period of 2π in θ and their magnitudes are much larger
than that of σxy. The maximum of IAHC for κ = ±1 states
is summarized in Table II. Overall, the obtained magnitude of
the IAHC in the studied family of compounds is comparable
or even larger than that in other noncollinear AFMs like
Mn3X [31,34] and Mn3Y [32–38]. In contrast to the MAE, the
IAHC follows the relation σ(θ ) = −σ(θ + π ), which mani-
fests that the spin state at θ + π is the time-reversed counter-
part of the order at θ and the IAHC is odd under time-reversal
symmetry.

C. Optical conductivity

Before proceeding to the MOE, we evaluate the optical
conductivity as a key quantity that comprises the MOE. Ex-
panding on the expressions for the IAHC [Eqs. (2) and (3)],

the optical conductivity can be written as

σαβ (ω) = σ ′
αβ (ω) + iσ ′′

αβ (ω)

= h̄e2
∫

d3k

(2π )3

∑
n �=n′

[ fn(k) − fn′ (k)]

×
Im[〈ψnk|vα|ψn′k〉〈ψn′k|vβ |ψnk〉]
(h̄ωnk − h̄ωn′k)2 − (h̄ω + iη)2

, (6)

where the superscript ′ (′′) of σαβ denotes its the real (imag-
inary) part, η is an adjustable smearing parameter in units
of energy, and h̄ω is the photon energy. Due to the found
similarity in the results among all studied systems, we take
Mn3NiN as a representative example for discussing the optical
conductivity (Fig. 5). The real part of the diagonal element,
σ ′

xx [see Figs. 5(a) and. 5(e)], measures the average in the
absorption of left- and right-circularly polarized light. The
spectrum exhibits one absorptive peak at 1.8 eV with a
shoulder at 1.1 eV and another absorptive peak at 3.9 eV. The
imaginary part of the diagonal element, σ ′′

xx [see Figs. 5(b)
and. 5(f)], is the dispersive part of the optical conductivity,
revealing two distinct valleys at 0.6 and 3.4 eV. Obviously,
σxx is not affected by the spin order (neither spin chirality κ

nor azimuthal angle θ ). A similar behavior has been found
in Mn3X [39], where σxx is identical for T1 and T2 spin
structures. From the symmetry analysis [60], it should hold
that σxx = σyy �= σzz for the magnetic point groups 3̄1m, 3̄,
and 3̄1m′ in the κ = +1 state, whereas σxx �= σyy �= σzz for
the magnetic point groups of 2/m, 1̄, and 2′/m′ in the κ = −1
state. However, all diagonal elements are approximately equal
in our calculations, i.e., we observe that σxx ≈ σyy ≈ σzz. This
promotes the optical isotropy in the Mn3XN family.

In contrast to the diagonal entries, the off-diagonal ele-
ments displayed in Figs. 5(c) and 5(d) and 5(g) to 5(l) depend
significantly on the spin order. For the κ = +1 state [Figs. 5(c)
and 5(d)], σxy(ω) vanishes if θ = 0◦, but it increases with the
increasing θ and reaches its maximum at θ = 90◦. For the κ =
−1 state [Figs. 5(g) to 5(l)], all three off-diagonal elements
− σxy(ω), σyz(ω), and σzx(ω) − can be nonzero and they peak
at θ = 30◦, 120◦, and 30◦, respectively. Furthermore, σxy(ω)
is at least two orders of magnitude smaller than σyz(ω) and
σzx(ω). The overall trend of σxy(ω) depending on the spin
order is very similar to that of the IAHC in Fig. 4(c).

D. Magneto-optical Kerr and Faraday effects

We now turn to the magneto-optical Kerr and Faraday
effects (MOKE and MOFE). The characteristic Kerr rotation
angle θK and the ellipticity εK are typically combined into the
complex Kerr angle given by [68–70]

φ
γ

K = θ
γ

K + iε
γ

K =
−ναβγ σαβ

σ0
√

1 + i(4π/ω)σ0
, (7)

where ναβγ is the three-dimensional (3D) Levi-Civita symbol
with the Cartesian coordinates α, β, γ ∈ {x, y, z} and σ0 =
1
2 (σαα + σββ ) ≈ σαα . The complex Kerr angle expressed here,
similarly to the IAHC, holds a pseudovector form, i.e.,
φK = [φx

K , φ
y

K , φz
K ], which differentiates the Kerr angles when

the incident light propagates along different crystallographic
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FIG. 5. Energy dependence of the optical conductivity in Mn3NiN. (a,b) Real and imaginary parts of σxx for the κ = +1 state. Characteristic
peaks and valleys are marked by black arrows. (c,d) Real and imaginary parts of σxy for the κ = +1 state. (e,f) The real and imaginary parts of
σxx for the κ = −1 state. (g,h), (i,j), (k,l) The real and imaginary parts of σxy, σyz, and σzx for the κ = −1 state.

axes. One can read from Eq. (7) that the longitudinal optical
conductivity σαα modulates the magnitude of the Kerr spec-
trum, while the transverse optical conductivity σαβ determines
key features of the Kerr spectrum. For example, only the
component φz

K is finite for the κ = +1 state, whereas all
components φx

K , φ
y

K , and φz
K are nonzero in the κ = −1

configuration. More importantly, φx
K �= φ

y

K �= φz
K implies the

presence of magneto-optical anisotropy if the incident light
propagates along x (011̄), y (2̄11), and z (111) axes (see
Fig. 1), respectively. Similarly, the complex Faraday angle can
be expressed as [71]

φ
γ

F = θ
γ

F + iε
γ

F = ναβγ (n+ − n−)
ωl

2c
, (8)

where n± = [1 + 4π i
ω

(σαα ± iσαβ )]1/2 are the complex refrac-
tive indices and l is the thickness of the thin film. Since σαα

is generally much larger than σαβ (see Fig. 5), n± ≈ [1 +
4π i
ω

σαα]1/2 ∓ 2π
ω

σαβ [1 + 4π i
ω

σαα]−1/2 (Ref. [72]) and conse-
quently, the complex Faraday angle can be approximated
as θ

γ

F + iε
γ

F = −ναβγ
2π l

c
σαβ[1 + 4π i

ω
σαα]−1/2. Therefore, the

Faraday spectrum is also determined by σαβ .
The magneto-optical Kerr and Faraday spectra for the spin

order with κ = +1 in Mn3XN are plotted in Fig. 6, where only
φz

K,F are shown since all other components vanish. Taking
Mn3NiN as an example [Fig. 6(d)], one can observe that
the Kerr and Faraday spectra indeed inherit the behavior of the
optical conductivity σxy(ω) [Figs. 5(c) and 5(d)]. For example,
the Kerr and Faraday angles are zero when θ = 0◦, increase

with increasing θ , and reach their maximum at θ = 90◦. This
indicates that the symmetry requirements for MOKE and
MOFE are the same as that for the optical Hall conductivity. In
addition, all Mn3XN compounds considered here have similar
Kerr and Faraday spectra, primarily due to their isostructural
nature. The Kerr rotation angles in Mn3XN are comparable
to the theoretical values in Mn3X (0.2◦ ∼ 0.6◦) [39] and are
larger than the experimental value in Mn3Sn (0.02◦) [40].
The largest Kerr and Faraday rotation angles of respectively
0.42◦ and 4 × 105 deg/cm emerge in Mn3AgN. This roots
potentially in the stronger SOC of the Ag atom as compared
to other lighter X atoms.

Figure 7 shows the magneto-optical Kerr and Faraday
spectra for the κ = −1 state of Mn3NiN. Since all off-
diagonal elements σyz(ω), σzx(ω), and σxy(ω) of the optical
conductivity are nonzero for the κ = −1 state, the Kerr and
Faraday effects will appear if the incident light propagates
along any Cartesian axes. This is in contrast to the case of the
κ = +1 configuration, for which only the incident light along
the z axis generates finite φz

K,F . In Fig. 7(a), φx
K,F are zero at

θ = 30◦ but have the largest values at θ = 120◦, owing to the
features in σyz [Figs. 5(i) and 5(j)]. Moreover, the Kerr and
Faraday rotation angles (θ x

K and θ x
F ) and the ellipticity (εx

K and
εx

F ) resemble, respectively, the real part (σ ′
yz) and imaginary

part (σ ′′
yz) of the corresponding off-diagonal conductivity ele-

ment. Compared to φx
K,F , the angle φ

y

K,F in Fig. 7(b) displays
an opposite behavior in the sense that it has the largest values
at θ = 30◦ but vanishes at θ = 120◦. This is not surprising as
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FIG. 6. Magneto-optical spectra of Mn3XN for X = (a) Ga, (b) Zn, (c) Ag, and (d) Ni in the κ = +1 spin configuration. The panels from
left to right show Kerr rotation angle θ z

K , Kerr ellipticity εz
K , Faraday rotation angle θ z

F , and Faraday ellipticity εz
F , respectively.

the periods of σyz and σzx as a function of θ differ by π
2 , which

can be read from Fig. 4(c) and Figs. 5(i) to 5(l). The angles
φz

K,F shown in Fig. 7(c) are two orders of magnitude smaller
than φx

K,F and φ
y

K,F , implying that very weak Kerr and Faraday
effects are expected for the incident light along the z axis.
From Figs. 6 and 7, we conclude that the MOKE and MOFE
depend strongly on the spin order, as in the case of the IAHC.

V. SUMMARY

In summary, using a group theoretical analysis, tight-
binding modeling, and first-principles calculations, we sys-
tematically investigated the spin-order dependent intrinsic
anomalous Hall effect and magneto-optical Kerr and Fara-
day effects in Mn3XN (X = Ga, Zn, Ag, and Ni) com-
pounds, which are considered to be an important class of
noncollinear antiferromagnets. The symmetry-imposed shape
of the anomalous Hall conductivity tensor is determined via
the analysis of magnetic point groups, that is, only σxy can
be nonzero for the right-handed spin chirality (κ = +1) while
finite σxy, σyz, and σzx exist for the left-handed spin chirality
(κ = −1). Our tight-binding modeling confirms these results
and further reveals that σxy is a sine-like function of the
azimuthal angle θ with a period of 2π ( 2π

3 ) for the κ = +1

(κ = −1) state. By examining the k-resolved Berry curvature,
we uncovered that the intrinsic anomalous Hall conductivity is
generally large if the Fermi energy enters into the region with
small band gaps formed at anticrossings. The first-principles
calculations reproduce all features of σxy and further verify
that σyz and σzx have a period of 2π for the κ = −1 state.
The intrinsic anomalous Hall conductivity shows a distinct
relation of σ(θ ) = −σ(θ + π ) due to its odd nature under
time-reversal symmetry. In addition, we calculated the mag-
netic anisotropy energy which manifests as Keff sin2(θ ) for
the κ = +1 state, but remains nearly constant at Keff/2 for
the κ = −1 state. A discrete two-fold energy degeneracy,
i.e., MAE(θ ) = MAE(θ + π ), is found in the noncollinear
antiferromagnetic Mn3XN. Strikingly, our first-principles cal-
culations reveal that the κ = −1 state could exist in Mn3XN
for certain values of θ .

The optical conductivities for κ = ±1 states were ex-
plored, considering Mn3NiN as a prototypical example. We
find that the spin order hardly affects the diagonal ele-
ments whereas it influences strongly the off-diagonal entries.
The optical isotropy is established since σxx(ω) ≈ σyy(ω) ≈
σzz(ω), while magneto-optical anisotropy occurs inevitably as
σxy(ω) �= σyz(ω) �= σzx(ω). Finally, magneto-optical Kerr and
Faraday effects are evaluated based on the optical conductiv-
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FIG. 7. The magneto-optical spectra of Mn3NiN for κ = −1 state: (a) φx
K,F , (b) φ

y

K,F , and (c) φz
K,F . The panels from left to right are Kerr

rotation angle, Kerr ellipticity, Faraday rotation angle, and Faraday ellipticity, respectively.

ity. The largest Kerr rotation angles in Mn3XN amount to 0.4◦,
which is comparable to other noncollinear antiferromagnets,
e.g., Mn3X [39] and Mn3Sn [40]. Since the optical Hall con-
ductivity plays a major role for magneto-optical effects, the
Kerr and Faraday spectra also display a spin-order dependent
behavior. Our work illustrates that complex noncollinear spin
structures could be probed via anomalous Hall and magneto-
optical effects measurements.

Note added in proof. After the submission of our work,
we became aware of two relevant works that demonstrate the
anomalous Hall effect in Mn3GaN [73] and Mn3NiN [74].
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APPENDIX: DETAILS OF FIRST-PRINCIPLES

CALCULATIONS

First-principles density functional theory calculations are
performed using the Vienna ab initio simulation package
(VASP) [75], in which the accurate frozen-core full-potential
projector augmented wave (PAW) method is used [76]. The
exchange-correlation potential is treated by the generalized-
gradient approximation with the parameters of Perdew-Burke-
Ernzerhof [77]. The energy cutoff of 500 eV, the energy
criterion of 10−6 eV, and the k-mesh of 16 × 16 × 16 are
used in the self-consistent calculations. Spin-orbit interaction
is explicitly included in fully relativistic projector augmented
potentials. A penalty functional is added to total energy to
constrain the local spin moments along a desired direction.
The experimental lattice constants of 3.898, 3.890, 4.013, and
3.886 Å are adopted for Mn3XN (X = Ga, Zn, Ag, and Ni),
respectively [50].

After the ground-state charge density is obtained, a total
of 80 maximally localized Wannier functions, including the
s, p, and d orbitals of Mn and X atoms as well as the s

and p orbitals of N atom, are disentangled from 144 Bloch
bands on a uniform k-mesh of 10 × 10 × 10, using the WAN-
NIER90 package [78]. Then, using the Kubo formula, intrinsic
anomalous Hall conductivity [Eqs. (2) and (3)] and optical
conductivity [Eq. (6)] are evaluated on a denser k-mesh of
100 × 100 × 100. Finally, the Kerr [Eq. (7)] and Faraday
[Eq. (8)] spectra are derived from the optical conductivity.
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