001     867679
005     20240711092256.0
020 _ _ |a 978-3-95806-461-4
024 7 _ |2 Handle
|a 2128/25466
024 7 _ |2 URN
|a urn:nbn:de:0001-2020102045
024 7 _ |2 ISSN
|a 1866-1793
037 _ _ |a FZJ-2019-06295
100 1 _ |0 P:(DE-Juel1)168112
|a Nonemacher, Juliane Franciele
|b 0
|e Corresponding author
|g female
|u fzj
245 _ _ |a Micromechanical Characterization of Ceramic Solid Electrolytes for Electrochemical Storage Devices
|f - 2018-09-30
260 _ _ |a Jülich
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
|c 2020
300 _ _ |a xv, 131 S.
336 7 _ |2 DataCite
|a Output Types/Dissertation
336 7 _ |0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|a Book
|m book
336 7 _ |2 ORCID
|a DISSERTATION
336 7 _ |2 BibTeX
|a PHDTHESIS
336 7 _ |0 2
|2 EndNote
|a Thesis
336 7 _ |0 PUB:(DE-HGF)11
|2 PUB:(DE-HGF)
|a Dissertation / PhD Thesis
|b phd
|m phd
|s 1597048164_31155
336 7 _ |2 DRIVER
|a doctoralThesis
490 0 _ |a Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment
|v 490
502 _ _ |a RWTH Aachen, Diss., 2019
|b Dr.
|c RWTH Aachen
|d 2019
520 _ _ |a The use of solid electrolytes in solid-state batteries offers safer operation, higher performance in terms of energy storage, as well as high thermal and chemical stability. Furthermore, solid electrolytes are expected to possess enhanced ionic conductivity and mechanical stability that warrants a safer separation of cathode and anode, and hence, potentially permits them to withstand long-term cycling operation. However, mechanical boundary conditions and operation as electrolyte under cyclic loading might still induce micro-cracks, dendrite growth, structural and mechanical failure that ultimately will terminate the battery life. Therefore, the mechanical reliability of solid electrolytes is important to warrant long-term reliability of solid state batteries. In this thesis, aiming at a characterization of reliability and life-time relevant aspects, the mechanical properties of Li$_{7}$La$_{3}$Zr$_{2}$O$_{12}$ for the application as solid electrolyte are studied on amicro-scale and the correlation to the materials microstructural characteristics. Mechanical investigations are based on indentation testing, yielding elastic modulus hardness and fracture toughness, where the use of an advanced micro-pillar testing methodology permitted to gain insight into the fracture properties of individual grains. The results emphasis the importance of the materials microstructure as well as the used testing loads, which illustrate effects related to the local apparent plasticity, and for larger loads localized pores. Overall, combining nano- and micro-indentation testing yields elastic modulus, hardness and fracture toughness with respect to materials intrinsic properties and global properties, where the use of standard Vickers indentation and the novel micro-pillar splitting test permit assessment of the fracture toughness of individual grains and effects related to grain boundaries and pores.
536 _ _ |0 G:(DE-HGF)POF3-113
|a 113 - Methods and Concepts for Material Development (POF3-113)
|c POF3-113
|f POF III
|x 0
856 4 _ |u https://juser.fz-juelich.de/record/867679/files/Energie_Umwelt_490.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/867679/files/Energie_Umwelt_490.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:867679
|p openaire
|p open_access
|p urn
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)168112
|a Forschungszentrum Jülich
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-113
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21