001     867721
005     20210130003843.0
020 _ _ |a 978-3-95806-392-1
024 7 _ |a 2128/23601
|2 Handle
037 _ _ |a FZJ-2019-06336
041 _ _ |a English
100 1 _ |a Krajsek, Kai
|0 P:(DE-Juel1)129347
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Extreme Data Workshop 2018
|c Jülich
|d 2018-09-18 - 2018-09-19
|w Germany
245 _ _ |a The Helmholtz Analytics Toolkit (HeAT) - A Scientific Big Data Library for HPC -
260 _ _ |a Jülich
|c 2019
|b Forschungszentrum Jülich GmbH Zentralbibliothek
295 1 0 |a Proceedings
300 _ _ |a 57-60
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1579791229_10043
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a IAS Series
|v 40
520 _ _ |a We present HeAT, a scientific big data librarysupporting transparent computation on HPC systems. HeATbuilds on top of PyTorch, which already provides many requiredfeatures like automatic differentiation, CPU and GPU support,linear algebra operations and basic MPI functionality as well asan imperative programming paradigm allowing fast prototypingessential in scientific research. These features are generalized toa distributed tensor with a NumPy-like interface allowing to port existing NumPy algorithms to HPC systems nearly effortlessly.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 1
536 _ _ |a HAF - Helmholtz Analytics Framework (ZT-I-0003)
|0 G:(DE-HGF)ZT-I-0003
|c ZT-I-0003
|x 2
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 3
700 1 _ |a Comito, Claudia
|0 P:(DE-Juel1)174573
|b 1
|u fzj
700 1 _ |a Götz, Markus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hagemeier, Björn
|0 P:(DE-Juel1)132123
|b 3
|u fzj
700 1 _ |a Knechtges, Philipp
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Siggel, Martin
|0 P:(DE-HGF)0
|b 5
856 4 _ |u https://juser.fz-juelich.de/record/867721/files/krajsek_2018_extreme_data_ws_submittedversion.pdf
|y OpenAccess
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/867721/files/krajsek_2018_extreme_data_ws_submittedversion.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:867721
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174573
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132123
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21