000867722 001__ 867722
000867722 005__ 20210130003844.0
000867722 0247_ $$2doi$$a10.1002/hbm.24889
000867722 0247_ $$2ISSN$$a1065-9471
000867722 0247_ $$2ISSN$$a1097-0193
000867722 0247_ $$2Handle$$a2128/24581
000867722 0247_ $$2altmetric$$aaltmetric:72404459
000867722 0247_ $$2pmid$$apmid:31808268
000867722 0247_ $$2WOS$$aWOS:000500765600001
000867722 037__ $$aFZJ-2019-06337
000867722 082__ $$a610
000867722 1001_ $$00000-0002-3283-2691$$aForsyth, Anna$$b0$$eCorresponding author
000867722 245__ $$aModulation of simultaneously collected hemodynamic and electrophysiological functional connectivity by ketamine and midazolam
000867722 260__ $$aNew York, NY$$bWiley-Liss$$c2020
000867722 3367_ $$2DRIVER$$aarticle
000867722 3367_ $$2DataCite$$aOutput Types/Journal article
000867722 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1584611540_29429
000867722 3367_ $$2BibTeX$$aARTICLE
000867722 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867722 3367_ $$00$$2EndNote$$aJournal Article
000867722 500__ $$aThis work was funded by F Hoffman La Roche Ltd.
000867722 520__ $$aThe pharmacological modulation of functional connectivity in the brain may under-lie therapeutic efficacy for several neurological and psychiatric disorders. Functionalmagnetic resonance imaging (fMRI) provides a noninvasive method of assessing thismodulation, however, the indirect nature of the blood-oxygen level dependent sig-nal restricts the discrimination of neural from physiological contributions. Here wefollowed two approaches to assess the validity of fMRI functional connectivity indeveloping drug biomarkers, using simultaneous electroencephalography (EEG)/fMRI in a placebo-controlled, three-way crossover design with ketamine andmidazolam. First, we compared seven different preprocessing pipelines to deter-mine their impact on the connectivity of common resting-state networks. Indepen-dent components analysis (ICA)-denoising resulted in stronger reductions inconnectivity after ketamine, and weaker increases after midazolam, than pipelinesemploying physiological noise modelling or averaged signals from cerebrospinalfluid or white matter. This suggests that pipeline decisions should reflect a drug'sunique noise structure, and if this is unknown then accepting possible signal losswhen choosing extensive ICA denoising pipelines could engender more confidencein the remaining results. We then compared the temporal correlation structure offMRI to that derived from two connectivity metrics of EEG, which provides a directmeasure of neural activity. While electrophysiological estimates based on thepower envelope were more closely aligned to BOLD signal connectivity than thosebased on phase consistency, no significant relationship between the change in electrophysiological and hemodynamic correlation structures was found, implyingcaution should be used when making cross-modal comparisons of pharmacologically-modulated functional connectivity.
000867722 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000867722 588__ $$aDataset connected to CrossRef
000867722 7001_ $$0P:(DE-HGF)0$$aMcMillan, Rebecca$$b1
000867722 7001_ $$0P:(DE-HGF)0$$aCampbell, Doug$$b2
000867722 7001_ $$0P:(DE-HGF)0$$aMalpas, Gemma$$b3
000867722 7001_ $$0P:(DE-HGF)0$$aMaxwell, Elizabeth$$b4
000867722 7001_ $$0P:(DE-HGF)0$$aSleigh, Jamie$$b5
000867722 7001_ $$0P:(DE-Juel1)177772$$aDukart, Juergen$$b6
000867722 7001_ $$0P:(DE-HGF)0$$aHipp, Jörg$$b7
000867722 7001_ $$0P:(DE-HGF)0$$aMuthukumaraswamy, Suresh D.$$b8
000867722 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.24889$$gp. hbm.24889$$n6$$p1472-1494$$tHuman brain mapping$$v41$$x1097-0193$$y2020
000867722 8564_ $$uhttps://juser.fz-juelich.de/record/867722/files/hbm.24889.pdf$$yOpenAccess
000867722 8564_ $$uhttps://juser.fz-juelich.de/record/867722/files/hbm.24889.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867722 909CO $$ooai:juser.fz-juelich.de:867722$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867722 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177772$$aForschungszentrum Jülich$$b6$$kFZJ
000867722 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000867722 9141_ $$y2020
000867722 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867722 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000867722 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000867722 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2017
000867722 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867722 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867722 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867722 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867722 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867722 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867722 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000867722 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867722 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000867722 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867722 920__ $$lyes
000867722 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000867722 980__ $$ajournal
000867722 980__ $$aVDB
000867722 980__ $$aUNRESTRICTED
000867722 980__ $$aI:(DE-Juel1)INM-7-20090406
000867722 9801_ $$aFullTexts