001     867722
005     20210130003844.0
024 7 _ |a 10.1002/hbm.24889
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a 2128/24581
|2 Handle
024 7 _ |a altmetric:72404459
|2 altmetric
024 7 _ |a pmid:31808268
|2 pmid
024 7 _ |a WOS:000500765600001
|2 WOS
037 _ _ |a FZJ-2019-06337
082 _ _ |a 610
100 1 _ |a Forsyth, Anna
|0 0000-0002-3283-2691
|b 0
|e Corresponding author
245 _ _ |a Modulation of simultaneously collected hemodynamic and electrophysiological functional connectivity by ketamine and midazolam
260 _ _ |a New York, NY
|c 2020
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1584611540_29429
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This work was funded by F Hoffman La Roche Ltd.
520 _ _ |a The pharmacological modulation of functional connectivity in the brain may under-lie therapeutic efficacy for several neurological and psychiatric disorders. Functionalmagnetic resonance imaging (fMRI) provides a noninvasive method of assessing thismodulation, however, the indirect nature of the blood-oxygen level dependent sig-nal restricts the discrimination of neural from physiological contributions. Here wefollowed two approaches to assess the validity of fMRI functional connectivity indeveloping drug biomarkers, using simultaneous electroencephalography (EEG)/fMRI in a placebo-controlled, three-way crossover design with ketamine andmidazolam. First, we compared seven different preprocessing pipelines to deter-mine their impact on the connectivity of common resting-state networks. Indepen-dent components analysis (ICA)-denoising resulted in stronger reductions inconnectivity after ketamine, and weaker increases after midazolam, than pipelinesemploying physiological noise modelling or averaged signals from cerebrospinalfluid or white matter. This suggests that pipeline decisions should reflect a drug'sunique noise structure, and if this is unknown then accepting possible signal losswhen choosing extensive ICA denoising pipelines could engender more confidencein the remaining results. We then compared the temporal correlation structure offMRI to that derived from two connectivity metrics of EEG, which provides a directmeasure of neural activity. While electrophysiological estimates based on thepower envelope were more closely aligned to BOLD signal connectivity than thosebased on phase consistency, no significant relationship between the change in electrophysiological and hemodynamic correlation structures was found, implyingcaution should be used when making cross-modal comparisons of pharmacologically-modulated functional connectivity.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a McMillan, Rebecca
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Campbell, Doug
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Malpas, Gemma
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Maxwell, Elizabeth
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sleigh, Jamie
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dukart, Juergen
|0 P:(DE-Juel1)177772
|b 6
700 1 _ |a Hipp, Jörg
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Muthukumaraswamy, Suresh D.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1002/hbm.24889
|g p. hbm.24889
|0 PERI:(DE-600)1492703-2
|n 6
|p 1472-1494
|t Human brain mapping
|v 41
|y 2020
|x 1097-0193
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/867722/files/hbm.24889.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/867722/files/hbm.24889.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:867722
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)177772
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21