


electrophysiological and hemodynamic correlation structures was found, implying

caution should be used when making cross-modal comparisons of pharmacologically-

modulated functional connectivity.
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1 | INTRODUCTION

Functional integration in the brain requires coordinated information

flow within and between neuronal networks (Bastos & Schoffelen,

2016), with this flow likely to be driven by synchronized rhythmic

fluctuations in the activity of neuronal ensembles (Buzsáki & Wang,

2012; Siegel, Donner, & Engel, 2012; Singer, 1999; Womelsdorf et al.,

2007). These fluctuations are thought to be reflected in the blood-

oxygen level dependent (BOLD) signal (Logothetis, 2003; Magri,

Schridde, Murayama, Panzeri, & Logothetis, 2012), and functional con-

nectivity analyses of fMRI data (fcFMRI) have confirmed the existence

of spatially distinct fluctuations working in synchrony, now termed

resting-state networks (RSNs) (De Luca, Beckmann, De Stefano, Mat-

thews, & Smith, 2006). These networks have been linked to various

cognitive states (Fox et al., 2005; van den Heuvel & Hulshoff Pol,

2010), as well as several neurological and psychiatric disorders

(M. Greicius, 2008; Rombouts, Barkhof, Goekoop, Stam, & Scheltens,

2005; Woodward, Rogers, & Heckers, 2011), and pharmacological

modulations of these networks posited as potentially relevant to ther-

apeutic action (Cole et al., 2013; Kelly et al., 2009; McCabe & Mishor,

2011). However, assessing pharmacological modulation of the BOLD

signal is limited by the indirect nature of this measure. Drugs can

affect neurotransmitters involved in signaling to the blood vessels

controlling cerebral blood flow (CBF), vascular tone, and other proper-

ties of blood vessels and tissues, all of which could alter the neuro-

vascular coupling characteristics that give rise to the BOLD signal and

related connectivity metrics (Iannetti & Wise, 2007). As such, BOLD

fMRI connectivity can provide a window into pharmacological modu-

lation of neural communications, however, methodological challenges

related to disentangling neural from non-neural (physiological and

artefactual) contributions to the signal remain.

Here we assessed fMRI connectivity in a drug study using two

common connectivity methods; dual regression of RSNs derived from

independent components analysis (ICA), and whole-brain, all-to-all

node-based connectivity. In the first, we assessed the impact of differ-

ent fMRI preprocessing pipelines on pharmacologically-modulated

RSNs. There is extensive literature regarding the impact and cleaning

of noise in the BOLD signal (for reviews see: [Birn, 2012; Caballero-

Gaudes & Reynolds, 2017; Iacovella & Hasson, 2011; Murphy, Birn, &

Bandettini, 2013]), with some researchers directly assessing the effect

of various cleaning methodologies on datasets (Gavrilescu et al.,

2008; Weissenbacher et al., 2009), however, there have been few

articles evaluating the impact of these methods in pharmacological

studies, and these are limited to one type of noise per article, for

example, motion (Hlinka, Alexakis, Hardman, Siddiqui, & Auer, 2010),

or using signals from physiological monitoring (Khalili-Mahani et al.,

2013). The current study assesses several types of noise removal on

the same dataset, including CSF and WM regression, modelling physi-

ological monitoring signals, and regressing noise components from

spatially discrete sources, derived from ICA.

Each fMRI RSN has been associated with several EEG frequency

bands (Mantini, Perrucci, Gratta, Romani, & Corbetta, 2007), making

comparisons of the full components between modalities difficult.

Therefore, in the second analysis we used a different connectivity met-

ric; we compared the drug modulations of all-to-all connectivity matri-

ces derived from the different fMRI preprocessing pipelines to those

from two different measures of electrophysiological connectivity. We

used two drugs that have been extensively researched in both EEG

and fMRI studies and provide complementary insights into the effects

of excitation and inhibition in the brain – ketamine and midazolam. At

subanaesthetic concentrations, ketamine is primarily a nonselective

antagonist of the glutamate N-methyl-D-aspartate (NMDA) receptor

(Krystal et al., 1994). Midazolam is a short-acting sedating benzodiaze-

pine, which performs as a positive allosteric modulator of the

γ-aminobutyric acid (GABA) A receptor (Michaloudis et al., 1998; Rein-

sel et al., 2000). The literature displays several commonalities in fMRI-

derived connectivity metrics, such as increased connectivity between

the prefrontal cortex and subcortical areas with ketamine (Anticevic

et al., 2015; Dandash et al., 2015; Grimm et al., 2015), and disruption

of higher cognitive networks and increased connectivity within low-

level sensory networks with midazolam (M. Greicius, 2008; Kiviniemi

et al., 2005; Liang et al., 2015). However, discrepancies between

results for both drugs are also evident, especially with the default

mode network (DMN), where ketamine has been shown to decrease

connectivity (Bonhomme et al., 2016), increase connectivity (Fleming

et al., 2019), or to have no effect (Mueller et al., 2018; Niesters et al.,

2012), and midazolam to decrease (Liang et al., 2015), or have no effect

(Greicius et al., 2008). While these discrepancies could be driven by dif-

ferences in analysis, such as using different seed locations, they could

also be due in part to different preprocessing strategies. Indeed, a

recent study investigating the pharmacological modulation of neural

activity (McMillan et al., 2019) showed that the commonly found deac-

tivation of the subgenual anterior cingulate cortex by ketamine

(De Simoni et al., 2013; Deakin et al., 2008; Doyle et al., 2013) dis-

appeared after physiological noise correction. To assess the potential

physiological confounds to the BOLD signal and its connectivity
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estimates, and to avoid comparison issues resulting from a priori seed

location decisions, we used model-free ICA combined with dual regres-

sion (Nickerson, Smith, Öngür, & Beckmann, 2017) to determine

changes in six common RSNs, after seven different preprocessing

strategies.

In the second part of this article, we compared pharmacologically-

modulated connectivity matrices derived from the different fMRI

pipelines to those from two electrophysiological connectivity metrics.

Unlike fMRI, EEG is a direct measure of neural activity, and has excel-

lent temporal specificity, in the order of milliseconds (Laufs et al.,

2003), but limited spatial resolution (Babiloni et al., 2004). In compari-

son, BOLD fMRI has excellent spatial specificity in the order of milli-

meters and can measure activity from deep cortical structures (Laufs

et al., 2003), however it has poor temporal resolution (Iannetti & Wise,

2007). Recording these two modalities separately is limited by several

factors that can vary from session to session including stability of drug

response, spontaneous brain activity, and differences in the recording

environment. Simultaneous EEG/fMRI has the potential to combine

the spatiotemporal resolutions of these two modalities to provide

more information than either alone, and to overcome pharmacological

confounds of the BOLD signal. This technology has been used to

compare temporal correlations of the BOLD signal with modulations

of power in various EEG bands (Goldman, Stern, Engel, & Cohen,

2002; Mantini et al., 2007; Scheeringa et al., 2008), however, few

studies have assessed the relationship between temporal correlations

of the BOLD signal and commonly used methods of deriving electro-

physiological connectivity (Deligianni, Centeno, Carmichael, & Cla-

yden, 2014; Hipp & Siegel, 2015).

To our knowledge, this is the first attempt to assess the pharma-

cological modulations of the relationship between fMRI and EEG

whole-brain connectomes and builds on our previous work assessing

the drug changes to power associations between these two modali-

ties (Forsyth et al., 2018). To assess the relationship, whole-brain

all-to-all connectivity of the BOLD signal nodes was conducted

and compared to electrophysiological connectivity estimates from

the same nodes. Electrophysiological connectivity estimates were

derived in two ways; using power envelopes (Hipp & Siegel, 2015):

correlating time-frequency power between nodes across time, and

phase relations (Vinck, Oostenveld, van Wingerden, Battaglia, & Pen-

nartz, 2011): assessing the distribution of phase angle differences

between nodes, assuming that when neural populations are function-

ally coupled the timing (phase) of their oscillatory processes become

synchronized.

In summary, the current study first assessed the impact of differ-

ent preprocessing methods on ICA-derived RSNs from the fMRI

BOLD signal, to assess the influence of pharmacologically driven

physiological noise. We then compared whole-brain connectomes

between the different fMRI pipelines and results from two different

EEG connectivity methods. This analysis was intended to assess

whether the modalities demonstrated similar changes in connectivity,

or if data from both capture a more complete view; whether due to

physiological confounds of the BOLD signal, or a difference in the

captured temporal and spatial aspects of the neural activity.

2 | METHODS

2.1 | Participants and procedure

Thirty male participants (mean age 27.3 ± 6.2 years), physically and

psychologically healthy, with an average body mass index of 24 (stan-

dard deviation [SD] = 3.5) were recruited via advertisements on cam-

pus fliers and University of Auckland websites, and screened for

recreational drug use. The recruitment was limited to males due to

the changes in GABA levels (Epperson et al., 2002) and EEG metrics

(Sumner et al., 2018) across the menstrual cycle, which could con-

found a repeated measures design. Data from this study have previ-

ously been used to assess the sensitivity and direction of the spectral

effects of each modality, and the temporal correlations between the

BOLD signal and modulations of band-limited EEG power (Forsyth

et al., 2018), as well as the temporal dynamics of the pharmacological

MRI response (McMillan et al., 2019). Participants were scanned on

three separate occasions in a placebo-controlled, three-way cross-

over design using ketamine, midazolam, and placebo, where the par-

ticipants were blinded to which drug they were receiving. Participants

were randomized using a random-number generator to one of six dif-

ferent condition-order groups. Intravenous access was obtained via a

cannula inserted into the antecubital fossa of the left arm. Drugs were

administered to a subanaesthetic level through an intravenous line

controlled by an infusion pump (Alaris PK, UK), programmed by a

supervising anaesthesiologist, located in the MR control room. Race-

mic ketamine was administered with a 0.25 mg/kg bolus dose,

followed by a 0.25 mg/kg/hr infusion. Doses were similar to those

used in previous literature (Deakin et al., 2008; Muthukumaraswamy

et al., 2015). Midazolam was administered with a 0.03 mg/kg bolus

dose, followed by a 0.03 mg/kg/hr infusion, resulting in doses similar

to prior studies (Greicius et al., 2008; Liang et al., 2015). Collection of

plasma would have interfered with our scanning protocol, however,

information regarding pharmacokinetics and plasma concentrations at

similar doses can be found in the literature (for ketamine ~150 ng/ml

(Clements and Nimmo, 1981) and for midazolam ~20 ng/ml (Platten

et al., 1998)). Drug administration commenced 7 min into a 16-min

resting-state scan. Participants were instructed to have their eyes

open and fixated on a small cross on a projection screen. After the

resting-state scan, several tasks were performed, however, only

resting-state and structural scans will be presented here. There was a

minimum of 48 hr between sessions to compensate for the washout

periods of each of the drugs. The drugs were tolerated well, with only

minimal and expected side effects, such as nausea and dizziness, in a

small number (n = 6) of sessions.

2.2 | Data acquisition

MR images were acquired on a 3 T MR scanner (Siemens Skyra,

Erlangen, Germany) with a 20-channel head coil. BOLD fMRI data

were acquired using a T2*-weighted echo planar imaging (EPI)

sequence (TR 2200 ms, TE 27 ms, flip angle 79�, 30 interleaved 3 mm
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slices, voxel size 3 × 3 × 3 mm). For the resting-state data reported

here, 437 volumes were acquired (7 min predrug, 9 min postdrug). In

each session, prior to the removal of the EEG cap and its attached

contrast markers, a low-resolution Magnetisation-prepared Rapid

Gradient-Echo (MPRAGE) scan (TR 1900 ms, TE 3.21 ms, FOV

256 mm2, flip angle 9�, 96 2 mm slices, voxel size 1.3 × 1.3 × 2.0 mm)

was acquired to capture electrode positions. In one of the three ses-

sions for each participant, a high resolution MPRAGE scan was

acquired after the EEG cap had been removed to avoid structural dis-

tortions (Klein et al., 2015; TR 2100 ms, TE 3.42 ms, flip angle 9�,

192 slices, voxel size 1 × 1 × 1 mm). A safety buzzer was placed in

the right hand of the participant, foam wedges were used to stabilize

the head, and typically several blankets used for participant comfort/

warmth. Verbal contact was made with the participants between each

scan to monitor any potential adverse events.

EEG data was recorded continuously using Brain Products (Brain

Products GmbH, Germany; Gilching) equipment; two BrainAmp MR plus

amplifiers with 64-channel Braincaps. Electrode caps used the manufac-

turer standard layout with FCz as reference, AFz as ground and one

drop-down electrode attached to the participant's back to record the

electrocardiogram (ECG). The amplifier system was placed on a sled

behind the head coil within the scanner to reduce cable lengths. Data

were recorded with a sampling rate of 5 kHz using BrainVision Recorder

software, with BrainVision RecView used to check online data quality

during MR acquisition. Filters of 0.1–250 Hz were used, and electrode

impedances were below 10 kΩ prior to data acquisition. A SyncBox

device (BrainProducts) was used to achieve synchronization between

the EEG hardware and 10 MHz scanner clock. Before entering the scan-

ner, individual electrode placements were recorded using an ultrasound

digitization device (Zebris, Germany; Isny) for later source localization

and co-registration. Vitamin E capsules, used as contrast markers, were

placed at electrode positions Cz, F5, CP5, and FC6.

During each scan participants wore a respiration belt, and a pulse

oximeter plethsmyograph on the left index finger (Biopac, USA; Goleta,

California). A nasal cannula was fitted to measure end-tidal oxygen and

carbon dioxide levels (ADInstruments, NZ; Dunedin). For safety monitor-

ing, an additional pulse oximeter was placed on the middle finger of the

left hand to measure heart rate and blood oxygen saturation (Nonin,

USA; Plymouth, Minnesota). All these signals were recorded on a Biopac

MP150 (CA) system. A blood-pressure cuff was placed on participant's

right arm for periodic (between scan) measurements of blood pressure.

2.3 | EEG preprocessing

To remove the artefact caused by the fast switching of the MRI gradi-

ents, a variant of the standard template removal technique (Allen,

Josephs, & Turner, 2000) was used, where the moving template is

compensated for and reset based on obtained fMRI motion parame-

ters (Moosmann et al., 2009). Data were low-pass filtered (100 Hz

cut-off frequency) and down-sampled to 500 Hz. The bal-

listocardiogram artefact caused by the pulsatile motion of blood in the

head (Eichele, Moosmann, Wu, Gutberlet, & Debener, 2010) was

removed using an automated method that combines ICA with singular

value decomposition to remove and/or filter components from the

data which share high levels of mutual information with the cardiac

trace (Liu, de Zwart, van Gelderen, Kuo, & Duyn, 2012). The afore-

mentioned steps were performed in EEGLAB (https://sccn.ucsd.edu/

wiki/EEGLAB) with subsequent steps performed using a combination

of custom scripts and Fieldtrip version 20160925 (Oostenveld, Fries,

Maris, & Schoffelen, 2011) Subsequently, visual inspection of the raw

EEG data allowed manual identification and removal of artefacts cau-

sed by head motion or jaw clenching. Average remaining data lengths

in minutes (from the 7 min pre and postdrug blocks) were as follows:

ketamine: predrug M = 6.63, standard error (SE) = .083, postdrug

M = 6.31, SE = .15, midazolam: predrug M = 6.85, SE = .031, postdrug

M = 6.59, SE = .093, placebo: predrug M = 6.63, SE = .076,

postdrug = 6.59, SE = .067. Residual artefacts, such as those from eye

blinks, were removed using ICA (number of components rejected:

midazolam M = 7.67, SE = .31, ketamine M = 16.16, SE = .81, placebo

M = 8.67, SE = .27) with components being manually identified

through inspection of the temporal and spatial data.

2.4 | fMRI preprocessing

fMRI analyses were carried out using the FMRIB Software Library

(FSL) (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012).

Seven different preprocessing pipelines were carried out to compare

their effects on connectivity analyses. For all pipelines the following

steps were applied: automated brain extraction using FSL's brain

extraction tool (BET; Smith, 2002), motion correction using MCFLIRT

(Jenkinson, Bannister, Brady, & Smith, 2002), spatial smoothing with a

Gaussian kernel (5 mm FWHM), high-pass temporal filtering at

0.01 Hz, registration to individual high-resolution structural scans

using FLIRT (Jenkinson et al., 2002), and registration to MNI standard

brain images using FNIRT (Andersson, Jenkinson, & Smith, 2010). Fur-

ther correction for motion and other physiological artefacts used FSL's

FEAT for general linear modelling (GLM), with all models including

24 standard and extended motion parameters (Friston, Williams,

Howard, Frackowiak, & Turner, 1996), and additional regressors dif-

fering between pipelines, as outlined below.

A. Simple preprocessing regressors (SIMPLE):

Average cerebrospinal fluid (CSF) and white matter (WM) signals,

obtained using masks created by segmenting each individual's high-

resolution scan, and their temporal derivatives.

A. Physiological noise modelling (PNM) preprocessing regressors

(PNM-only):

Thirty-four slice-wise physiological regressors created using FSL's

Physiological Noise Modelling (PNM) toolbox (Brooks et al., 2008),

and two end-tidal CO2 regressors. These included those for the car-

diac and respiratory cycle (Glover, Li, & Ress, 2000), respiratory
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volume over time (Birn, Smith, Jones, & Bandettini, 2008), and heart

rate (HR) (Chang, Cunningham, & Glover, 2009).

B. Simple and PNM preprocessing regressors (SIMPLE + PNM):

CSF, WM, and PNM regressors.

C. Independent components analysis (ICA) and PNM pre-processing

regressors (ICA + PNM):

Approximately 50 noise components per dataset derived from

FSL's FIX (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), plus the

PNM regressors listed above.

D. ICA regressors (ICA-only)

ICA regressors listed above.

E. Simple and ICA preprocessing regressors (SIMPLE + ICA):

CSF, WM, and ICA regressors.

F. Phase-randomized preprocessing regressors (PHASERANDOMISED):

To assess whether the addition of regressors into the GLM

resulted in a loss of signal as well as noise due to the reduced degrees

of freedom (df ), we created simulated PNM and ICA regressors via a

technique created by Bright and Murphy (2015). Here the true noise

regressors were repeatedly phase randomized until the temporal cor-

relation with the true regressors was r < .1, and these were entered

into the GLM instead of the true variables.

Data were split into 190 volumes predrug (7 min) and 190 volumes

postdrug (7 min). Datasets exhibiting greater than 0.3 cm movement in

at least 15% of their fMRI volumes, or those that had more than 20% of

the EEG recording removed during visual inspection of the raw data,

were removed from subsequent analyses. Consequently, all analyses

were performed on 27 placebo, 25 midazolam, and 25 ketamine datasets

(of which 23 had all three conditions from the same participants).

2.5 | fMRI analysis

All participants' whole-scan placebo data for all preprocessing pipe-

lines were temporally concatenated together, and run through FSL's

MELODIC 3.0 toolbox, which uses ICA to decompose 4D data sets

into different spatial and temporal components (Beckmann & Smith,

2004). The number of ICs was estimated using the Laplace approxima-

tion to the Bayesian evidence for a probabilistic principal components

model. These were visually examined and compared to the literature,

before choosing six common resting-state components (right and left

Frontoparietal network (rFPN, lFPN), Sensory Motor Network (SMN),

Visual Network (VN), posterior and anterior Default Mode Networks

(pDMN, aDMN)) which were entered into a dual regression analysis

using FSL (Nickerson et al., 2017). This analysis uses the ICA compo-

nents derived from the pooled data as spatial regressors in a multiple

regression onto each participant's 4D preprocessed data, which

resulted, for each pipeline, in 27 participant-specific time series per

group-level spatial component. These time series were variance-

normalized to allow for assessment of magnitude information and

used as temporal regressors in a second multiple regression, again into

each participant's 4D preprocessed data, to obtain participant- and

condition-specific spatial maps for each component. Subsequently,

the differences between the most commonly used pipeline in the liter-

ature (SIMPLE) and all other pipelines were assessed at the group-

level with two-tailed, paired-sample t-tests computed using FSL's

randomize permutation-testing tool (p < .05; Winkler, Ridgway, Web-

ster, Smith, & Nichols, 2014). To correct for multiple comparisons,

a threshold-free cluster enhancement (TFCE) was used (Smith &

Nichols, 2009). To assess whether ketamine or midazolam modulated

the connectivity of these six networks, and if the changes were

dependent on the preprocessing pipeline, ICA and dual regression

were also performed on the data from the two drug sessions. Here,

the resulting pre- and postdrug spatial maps for each of the 6 compo-

nents from 25 participants in each drug condition were subjected to

the same randomized paired-sample t test as described above, and

the analysis was repeated for each pipeline.

In order to quantify the differences in the modulations of RSN

activity, participant-level predrug parameter estimates (or those from

the SIMPLE pipeline during placebo) were subtracted from postdrug

parameter estimates (or those from the other pipelines during pla-

cebo), and then masked by the significant results from the randomiza-

tion t-tests. These were then masked by the component, and then by

an inverse mask of the component, to assess the changes in connec-

tivity both within the RSN and between the RSN and the rest of the

brain. The parameter estimate values were summed, resulting in a

value that represented both the strength of the connectivity change,

and its spatial spread, both inside and outside the RSN, for each par-

ticipant, for each condition. Subsequently, 6 (RSN) × 7 (Pipeline)

repeated measures ANOVAs were performed for the ketamine and

midazolam conditions, both within, and outside the RSNs, and

6 (RSN) × 6 (Pipeline) repeated measures ANOVAs were run for the

placebo condition, again within and outside the RSNs. Posthoc t-tests

were performed between each pipeline across RSNs, and for each

RSN separately, and Bonferroni corrected for multiple comparisons. It

should be noted here that the decision to derive ICA and dual regres-

sion separately for each condition was based on the desire to explore

each session-type separately. There was no strong theoretical justifi-

cation to directly compare the two drugs, and as spontaneous activity

can vary from session to session (Birn et al., 2013), such a decision

would have resulted in losing information specific to each session by

combining across all three sessions.

To assess whole-brain connectivity, 264 10 mm spherical func-

tionally defined nodes (Power et al., 2011) were used. The averaged

signal from within each node was used in an all-to-all Pearson's corre-

lation analysis for pre- and postdrug for each of the preprocessing

pipelines described above. The results were Fisher-Z transformed,
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predrug subtracted from post, and one sample t-tests to assess

whether the group result was significantly different to zero, false dis-

covery rate (FDR) corrected (p < .05).

2.6 | EEG source localization and analysis

Individual electrode positions were co-registered to the structural

MRI of each participant. For source modelling, three-shell boundary

element models were constructed for each session using brain, skull,

and scalp layers (Oostendorp & Oosterom, 1989). EEG data were

average-referenced and global covariance matrices were generated

for the data, which were filtered into seven frequency bands: delta

(1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), low beta (15–26 Hz), and

high beta (28–40 Hz). These frequencies were chosen to avoid any

potential slice artefact frequency and its harmonics (Ritter, Becker,

Freyer, & Villringer, 2010). Linearly constrained minimum variance

beamforming with 5% regularization (Veen, Drongelen, Yuchtman, &

Suzuki, 1997) was applied at the 264 seed locations defined by Power

et al. (2011) by reverse warping from the template head-model pro-

vided with FieldTrip to generate spatial filters for each node. Data

were split into trials equating to the TR in the fMRI data, and then

sorted into those that fell within pre- and postdrug time frames.

Although there are myriad options to determine electrophysiological

connectivity we selected two that were well defined in the literature, and

capture relations between oscillatory neuronal activity using different

data features: correlation of power and consistency of phases of band-

limited signals at two locations (Siegel et al., 2012; Wang, 2010). Electro-

physiological connectivity measures based on the power envelopes allow

assessment at similar time scales to the BOLD signal (Deligianni et al.,

2014; Engel, Gerloff, Hilgetag, & Nolte, 2013), and are therefore thought

to be more closely aligned with fMRI connectivity metrics than phase

consistency measures. Here we test this prediction by comparing the two

measures' connectivity metrices to those derived from the BOLD signal.

Power correlation: We quantified the correlation of band-limited

power at different locations, that is, the co-variation of the amplitude

oscillatory processes in different brain areas, using a method account-

ing for trivial correlation related to source leakage (see Hipp, Hawellek,

Corbetta, Siegel, & Engel, 2012). This method discounts spurious corre-

lation caused by limited spatial resolution by harnessing the fact that

signal components from the same underlying source are characterized

by an identical phase (Nolte et al., 2004). For each pair of signals the

components sharing the same phase are removed before computing

power estimates, essentially orthogonalising the signals before deriving

power envelopes. Most human electrophysiological functional connec-

tivity has been studied with magnetoencephalography (MEG) data

(e.g., Brookes et al., 2011), and the methodology used in this article

directly reflects that of Hipp et al. (2012), who demonstrated brain-

wide correlation of electrophysiological signals that were spatially

highly structured and varied by frequency. Subsequently, we extracted

Pearson correlation coefficients between each pair of nodes. After

Fisher-Z transformation, the predrug values were subtracted from the

postdrug for each participant, and one sample t-tests were performed

to assess whether the group result was significantly different to zero,

corrected for multiple comparisons across the nodes using FDR correc-

tion (p < .05), and maximum thresholded at ±7.

Consistency of phases: We used the weighted phase-lag index

(wPLI; Vinck et al., 2011) to quantify the consistency of phases, that

is, agreement on the shortest temporal scale between band-limited

signals from different locations. The wPLI weights the contribution of

the observed phase leads and lags by the magnitude of the Imaginary

Component of the cross-spectrum. This was calculated in trials of

2.2 s (equivalent to the TR of the fMRI data) using the FieldTrip tool-

box. As with the orthogonalised data, results were Fisher-Z trans-

formed, predrug subtracted from post, averaged across the group

using one-sampled t-tests, and FDR corrected.

2.7 | Comparing whole-brain connectomes from

EEG and fMRI

For both variants of electrophysiological connectivity, and for two of

the fMRI pipelines, the upper triangular part of the Fisher-Z trans-

formed Pre, Post, and difference (post-pre) correlation matrices were

vectorised, (see Figure 1 for schematic). The two fMRI pipelines were

chosen to compare data cleaning between the two pipelines that

showed the most difference during the dual regression analysis

(SIMPLE and ICA-only). A Pearson's correlation analysis between each

EEG band and the two fMRI pipelines was run. One-sample t-tests

were performed on the correlations to assess if they were significantly

different from zero (p < .05 Bonferroni corrected for 30 tests run on

each fMRI preprocessing pipeline: the five EEG bands, two electro-

physiological connectivity metrics (power correlations, coherence),

three conditions (predrug, postdrug, and post-pre drug)). The coordi-

nates and anatomical labels, defined by the Harvard-Oxford Cortical

and Subcortical Atlases, of the nodes involved with the 10 strongest

modulations for each dataset can be found in Tables S1–S6.

3 | RESULTS

3.1 | Exploring differences in the noise structures

between conditions

Figure 2 shows the group-level changes over time of HR, blood pressure,

RVT, and end-tidal CO2. When looking at each condition separately,

comparing pre- and postdrug, only ketamine had significant changes in

HR (mΔ = 13.52 bpm, SE = 2.41, p < .001), end-tidal CO2 (mΔ = −.15%,

SE = .43, p = .003), and RVT (mΔ = 7.43e−4, SE = 3.31, p = .04). Ketamine

also significantly increased systolic (mΔ = 9.86 mmHg, = = 3.27, p = .01)

and diastolic (mΔ = 11 mmHg, SE = 2.74, p = .002) blood pressure, while

midazolam significantly decreased these (systolic: mΔ = −8.429 mmHg,

SE = 1.63, p < .001, diastolic: mΔ = −7.43 mmHg, SE = 2.23, p = .005).

However, ketamine's impact on both systolic (F[2,26] = 10.74, p < .001)

and diastolic (F[2,26] = 12.75, p < .001) blood pressure were significantly

greater than midazolam's.
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3.2 | fMRI ICA and dual regression

In the first part of this article, we investigated the impact of six

preprocessing approaches on the quantification of baseline and drug-

related changes in BOLD resting-state functional connectivity as

assessed with ICA. We started by comparing differences in the con-

nectivity of RSNs resulting from a commonly used, simple

preprocessing pipeline and those from six more sophisticated pipelines

for placebo. We then assessed the pharmacological modulations of

the RSNs by ketamine and midazolam, and how these modulations dif-

fer between preprocessing pipelines.

3.3 | Placebo

Dual regression was used to assess the differences in connectivity of

RSNs derived from the first 7 min of placebo resting-state data for

the commonly used preprocessing pipeline (SIMPLE) and six more

F IGURE 1 Comparing whole-brain connectomes from EEG and fMRI: an illustration of the analysis workflow. (a) Connectivity analyses were

performed in all-to-all fashion on 264 nodes prior to, and after drug administration for both fMRI (b) and EEG (c). Predrug matrices were

subtracted from post-drug, and the upper triangles (d) of the matrices were turned into vectors (e). These EEG and fMRI vectors were submitted

to a correlation analysis, for each participant. Correlation values were Fisher Z-transformed and averaged, and this was repeated for pre- and

post-drug separately, and for two different fMRI pre-processing pipelines, and all five EEG bands (f)
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sophisticated preprocessing pipelines for six commonly reported

RSNs: the right and left frontoparietal network (lFPN, rFPN), the sen-

sory motor network (SMN), the visual network (VN), and the posterior

and anterior default mode networks (pDMN, aDMN).

The results of the dual regression analysis on the placebo data

can be found in Figure 3. The pipelines using just the addition or

replacement with PNM regressors (Figure 3b,c) showed areas of

reduced connectivity within the networks compared to the SIMPLE

pipeline, and increased connectivity between the networks and the

rest of the brain, especially in the SMN, VN, and aDMN. The pipelines

containing ICA (Figure 3d-f) also showed primarily reduced connectiv-

ity, and while this was often limited to within network connectivity, it

was more widespread than the changes with the phase-randomized

pipeline (Figure 3g), where connectivity changes were limited to

reductions within the component areas. Some areas of increased con-

nectivity between the VN and aDMN to other areas of the brain were

found with the ICA-denoised pipelines. Figure 6a depicts a bar plot of

the summed changes in parameter estimates, both within the RSNs,

and between them and the rest of the brain. The ICA-pipelines (vary-

ing shades of blue) most commonly showed the largest decreases in

connectivity compared to the SIMPLE pipeline, both within and out-

side the RSNs. Two 6 (RSN) × 6 (Pipeline) repeated measures ANO-

VAs were run on the within and outside RSN results, and, while both

main effects and the interaction effect were significant, we focus on

the main effect of pipeline for all ANOVAs run. For both within and

outside the RSN, the Mauchley's test indicated that the assumption of

sphericity had been violated (within: χ2 = 515.34, p < .001, outside:

χ
2 = 504.12, p < .001), therefore Greenhouse–Geisser corrected tests

are reported (within: ε = .228, outside: ε = .223). The results show that

there was a significant main effect of pipeline on RSN connectivity,

with large effect sizes, both within: F(1.1, 59.2) = 146.57, p < .001,

η
2 = .734, and outside: F(1.1, 60.4) = 232.15, p < .001, η2 = .814. Posthoc

t-tests between pipelines (see Table S1a,b), across RSNs, show signifi-

cant differences between all pipelines both within and outside RSNs.

The average changes in connectivity to the SIMPLE pipeline, their

SEs, across RSNs can be found in Table S1c,d). The vast majority of

posthoc t-test comparisons were statistically significant between

pipelines for each RSN individually (see Table S1e,f). There were a

few notable exceptions, mainly between pipelines containing PNM

regression and the phase-randomized pipeline and between pipelines

containing ICA regressors, both within and outside RSNs.

The results of this analysis demonstrate that preprocessing

choices can have substantial impact on the connectivity of resulting

RSNs and highlight the importance of clearly detailing these choices.

We next assessed the differences caused by the preprocessing pipe-

lines on the pharmacological modulations of these RSNs, that is, the
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F IGURE 2 Changes in physiological measures. Depicted are the changes across time in heart rate (a), respiratory volume over time (b), and

end-tidal CO2, and the change in blood pressure between pre- and post-drug, for placebo (red), ketamine (blue), and midazolam (green). Infusion

started at time 0, and error bars/shading are the standard error of the mean. Only ketamine significantly modulated the first three parameters,

with increases in HR (p < .001) and RVT (p = .04), and decreases in end-tidal CO2 (p = .003). Ketamine also significantly increased both systolic

(p = .01) and diastolic (p = .002) blood pressure, while midazolam decreased these (systolic: p < .001, diastolic: p = .005)
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contrast of post- and preinfusion resting connectivity for ketamine

and midazolam, again using dual regression.

3.4 | Ketamine

Ketamine caused reduced connectivity in the RSNs, with spatial dif-

ferences for each preprocessing pipeline (Figure 4). The pipelines con-

taining only CSF and WM or PNM regression (Figure 4b-d) generally

depicted weaker and more spatially constricted reductions after drug

administration than those utilizing ICA denoising (Figure 4e-g). The

phase-randomized pipeline often reflected the simplest one, however

the changes were spatially smaller, and disappeared altogether in the

SMN (Figure 4h). ANOVAS run on data presented in Figure 6b

(Greenhouse–Geisser corrected as: within: χ
2 = 183.73, p < .001,

ε = .233, outside: χ2 = 175.94, p < .001 ε = .311) showed a significant

main effect on RSN connectivity, with large effect sizes, both within:

F(1.4, 33.5) = 103.70, p < .001, η
2 = .812, and outside: F(1.9,

44.7) = 135.40, p < .001, η2 = .849. Posthoc t-tests between pipelines

(see Table S2a,b), across RSNs, were mostly significantly different,

with exceptions between some of the simpler pipelines and the ICA-

only and SIMPLE + ICA pipeline within RSNs, and between the ICA

+ PNM and PNM-only pipelines outside RSNs. The average changes

in connectivity after drug administration, and their SEs, across RSNs

can be found in Table S2c,d). The vast majority of posthoc t-test com-

parisons between pipelines for each RSN individually were statistically

significant (see Table S2e,f). There were some exceptions, mainly

between pipelines containing PNM regression and the phase-

randomized pipeline, between those containing PNM regression and

the SIMPLE pipeline, between pipelines containing ICA regressors,

and occasionally between ICA + PNM and the simpler pipelines, both

within and outside RSNs.

3.5 | Midazolam

In general, midazolam increased connectivity in sensory networks

(SMN, VN), and decreased connectivity in some of the higher cogni-

tive networks (rFPN, pDMN) (Figure 5). The pipelines containing only

CSF and WM or PNM regression (Figure 5b–d) showed stronger and
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F IGURE 3 The impact of different preprocessing pipelines on the connectivity of six common resting-state networks. This figure depicts the

differences in connectivity of six RSNs derived from independent components (depicted in green, Row a.)) for six different preprocessing

pipelines compared to the most frequently used preprocessing pipelines, using the first 7 min of placebo data. Depicted are t-value maps from a

dual regression between the simplest pipeline (CSF and WM regressors only), and all other pipelines, which are masked by areas that

demonstrated significant change from a randomized paired-t test, with a Bonferroni-corrected threshold of p < 0.05. (b) PNM regressors only,

(c) CSF, WM, and PNM regressors, (d) ICA-derived and PNM regressors, (e) ICA derived regressors only, (f) CSF, WM, and ICA-derived regressors,

(g) CSF, WM, and the same number of regressors as in the most extensive pipeline (ICA + PNM), but phase-randomized to ensure they are true

noise. Increases in connectivity compared to the SIMPLE pipeline are shown in red-yellow, decreases in dark-light blue
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more wide-spread increases in connectivity after drug administration

in the SMN, similar changes in the VN, and fewer decreases in con-

nectivity in the higher cognitive networks than the pipelines utilizing

ICA derived regressors (Figure 5e–g). The phase-randomized pipeline

again most often reflected the simplest pipeline (Figure 5h). ANOVAS

run on data presented in Figure 6c (Greenhouse–Geisser corrected as:

within: χ2 = 294.77, p < .001, ε = .187, outside: χ2 = 298.53 p < .001,

ε = .298) show that there was a significant main effect of pipeline on

RSN connectivity, with large effect sizes, both within: F(1.1,

27.0) = 32.41, p < .001, η2 = .575, and outside: F(1.8, 42.9) = 65.759,

p < .001, η2 = .733. Posthoc t-tests between pipelines (see Table S3a,

b), across RSNs, demonstrate primarily significant differences, with

some exceptions within the simpler pipeline comparisons, and within

those that used ICA regression. The average changes in connectivity

after drug administration, the average differences between pipelines,

and the respective SEs, across RSNs can be found in Table S3c,d). The

vast majority of posthoc t-test comparisons between pipelines for

each RSN individually were statistically significant (see Table S3e,f).

There were some exceptions, mainly between pipelines containing

PNM regression and the phase-randomized pipeline, between those

containing PNM regression and the SIMPLE pipeline, between pipe-

lines containing ICA regressors, and occasionally between ICA + PNM

and the simpler pipelines, both within and outside RSNs.

The results from the first part of our article clearly demonstrate

the effects of different preprocessing strategies on the results of an

ICA and dual regression analysis to determine pharmacological modu-

lation of RSNs. The overall pattern demonstrates similarities between

the simpler pipelines (SIMPLE, PNM-only, SIMPLE + PNM), occasion-

ally between these and the phase-randomized pipeline, and between

those that used ICA regression. However, the lack of a ground truth

makes discerning the most effective pipeline difficult, and all pipelines

were brought forward to the all-to-all node connectivity analysis in

the second part of the article.

3.6 | Whole-brain connectomes from EEG

and fMRI

In the second part of the article, we compared fMRI connectivity

to connectivity metrics derived from electrophysiological signals.
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F IGURE 4 The impact of different preprocessing pipelines on the pharmacological modulation of six common resting-state networks by

ketamine. This figure depicts the changes in connectivity from baseline of six RSNs derived from independent components (depicted in green,

Row a.)) after the administration of ketamine, for different preprocessing pipelines. Shown are t-value maps from a dual regression between pre-

and post-drug, with increases in connectivity depicted in red-yellow, and decreases in dark-light blue, masked by areas that demonstrated

significant change from a randomized paired-t test, with a Bonferroni-corrected threshold of p < .05. This was done after seven different

preprocessing pipelines: (b) CSF and WM regressors only, (c) PNM regressors only, (d) CSF, WM, and PNM regressors, (e) ICA-derived and PNM

regressors, (f) ICA derived regressors only, (g) CSF, WM, and ICA-derived regressors, (h) CSF, WM, and the same number of regressors as in the

most extensive pipeline (ICA + PNM), but phase-randomized to ensure they are true noise

FORSYTH ET AL. 1481



We used another common method of assessing connectivity; the

all-to-all relationship between the activity of brain-wide nodes.

We assessed the differences between pharmacologically modu-

lated connectivity matrices of 264 nodes resulting from the differ-

ent preprocessing pipelines from the first analysis and compared

these to drug-modulated matrices derived from electrophysiologi-

cal measures of connectivity. As EEG is a direct measure of neural

activity, comparing it to fMRI results may help clarify which

preprocessing pipeline is closest to the ground truth. However,

the relationship between the information that is used by the dif-

ferent methodologies in each modality is still unclear, and the

electrophysiological metric that would best represent the informa-

tion in correlations of the BOLD signal is yet to be determined.

We utilized two EEG metrics, one based on correlations of the

power envelope, and the other on phase relations between the

nodes. Connectivity matrices were generally stable across the pla-

cebo scan, with only a few increases seen after the simpler

preprocessing pipelines and in the delta power envelope when pre

and post scan were compared (Figure S2).

3.7 | Ketamine

After preprocessing pipelines containing only containing only CSF and

WM or PNM regression (Figure 7a–c), most of the significant changes

in BOLD fMRI connectivity between the 264 nodes after ketamine

administration were increases, with the strongest changes occurring

between frontal (anterior cingulate cortex [ACC] and medial frontal

gyrus [mFG]) and parietal (supramarginal gyrus [SMG] and precuneus),

insular, and occipital (intracalcarine [ICC]) cortices. There was also at

least one strong connectivity decrease between the frontal lobe and

either the precuneus or the lateral occipital cortex (lOC) in each of

these three pipelines (Table S4a–c). In comparison, far more changes

were seen with the ICA-denoising pipelines, and these were predomi-

nantly reduced connectivity with the strongest reductions occurring

between the ACC and the insular and parietal (precuneus) cortices,

between the paracingulate gyrus and the precuneus and occipital cor-

tices, and within the sensory-motor cortex (Figure 7d-f, Table S4d–f).

Some areas demonstrated increases in connectivity, predominantly in

the ICA + PNM pipeline, with the strongest changes being between
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F IGURE 5 The impact of different preprocessing pipelines on the pharmacological modulation of six common resting-state networks by

midazolam. This figure depicts the changes in connectivity from baseline of six RSNs derived from independent components (depicted in green,

Row a.)) after the administration of midazolam, for different preprocessing pipelines. Shown are t-value maps from a dual regression between pre-

and post-drug, with increases in connectivity depicted in red-yellow, and decreases in dark-light blue, masked by areas that demonstrated

significant change from a randomized paired-t test, with a Bonferroni-corrected threshold of p < .05. This was done after seven different

preprocessing pipelines: (b) CSF and WM regressors only, (c) PNM regressors only, (d) CSF, WM, and PNM regressors, (e) ICA-derived and PNM

regressors, (f) ICA derived regressors only, (g) CSF, WM, and ICA-derived regressors, (h) CSF, WM, and the same number of regressors as in the

most extensive pipeline (ICA + PNM), but phase-randomized to ensure they are true noise
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homologous areas of the prefrontal cortex (PFC), and between the

ACC and the frontal pole (FP). The different pipelines had a range of

79–217 connections that significantly increased in connectivity, and

for those that were present in all ICA-denoised pipelines, 10 were also

present in pipelines containing only CSF and WM or PNM regression,

involving connections between the precuneus, operculum, and insular

F IGURE 6 Average changes in

connectivity within and outside

RSNs for each preprocessing

pipeline. This figure depicts the

average change in summed

parameter estimates from the

results of the dual regressions on

placebo (a), ketamine (b), and

midazolam (c) data, for each RSN,

and each preprocessing pipeline.

NB: y-axis scale is different for the

two drug conditions compared to

the placebo condition
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cortices to the lateral occipital cortex and frontal gryi. The phase-

randomized pipeline (Figure 7g, Table S4g) resulted in increases similar

to the simplest pipeline.

Electrophysiological connectivity estimates derived from the

power envelopes demonstrated reductions in connectivity in the

alpha range (Figure 7j) within the occipital lobe, and between this lobe

and frontal, parietal, and temporal areas. The strongest reductions all

occurred in posterior areas of the brain (Table S5c). Reductions were

also seen in the low beta range (Figure 7k, Table S5d), primarily within

the sensory motor cortex (SMC); between pre- and postcentral gyri,

and between their homologous areas, and also between this cortex

and the precuneus and lOC.

Connectivity estimates derived from the wPLI showed far fewer

connectivity changes. The delta band had one significant increase in

connectivity, between the IC and the superior frontal gyrus (sFG;

Figure 7m, Table S6a). The theta band demonstrated increases

between the FP and primarily the IC areas (Figure 7n, Table S6b).

The only band to show reduced connectivity was alpha, with the

strongest changes occurring within the occipital and temporal corti-

ces, and a small number between these posterior areas and the FP

(Figure 7o, Table S6c). The low beta band demonstrated the stron-

gest increases between the FP and posterior areas including the

precuneus, cuneal cortex (CC), and insular cortex (Figure 7p,

Table S6d). The high beta band showed only one significant change;

an increase in the connectivity between the lOC and the sFG

(Figure 7q, Table S6e).

3.8 | Midazolam

After midazolam administration, the strongest fMRI changes

occurred in the pipelines containing only CSF and WM or PNM

regression, with similar patterns occurring in all three; reductions

radiating out from the occipital lobe, and spatially widespread

increased connectivity (Figure 8a–c). The strongest reductions in

all three included between the occipital lobe (ICC) and the SMC,

with the SIMPLE + PNM also demonstrating reduced connectivity

between the occipital and temporal lobes (Table S7a–c). The

strongest increases were seen between the precuneus and other

posterior areas (lingual gyrus (LG), CC, occipital pole (OP), and

occipital fusiform gyrus (oFG)). The strongest changes in the

pipelines which included ICA denoising reflected a pattern of

increased connections within anterior areas (paracingulate gyrus

[PcG]/ACC/FP; Figure 8d–f, Table S7d–f), and decreases centered

around occipital and parietal areas; primarily between the SMG

and the CC and ICC. Phase-randomization of the regressors

resulted in similar results to the simple pipeline, but with far

fewer changes. The strongest changes were increases within the
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F IGURE 7 Modulation of all-to-all connectivity of 264 functional nodes after ketamine administration. Depicted are results from a FDR

corrected (p < .05) one-sample t-test on the difference between post- and predrug connectivity estimates, increases depicted in red-yellow,

decreases in dark-light blue. Connectivity values are derived through Pearson correlation of the BOLD signal for each preprocessing pipeline (a–

g), and via either Pearson correlation of the orthogonalised power envelope (h–l), or the weighted phase-lag index (m–q) for each EEG band
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SMC and between this area and the precuneus/CC (Figure 8f,

Table S7f).

Electrophysiological estimates derived from the power envelope

showed broad, whole-brain increases in connectivity in the delta,

theta, alpha, and low beta bands, with the high beta band also show-

ing a small number of strengthened connections (Figure 8h–l). The

strongest increases in the delta band were between the FP and the

insular cortex and thalamus, between the ACC and the posterior cin-

gulate cortex (PCC) and insular cortex, and between the SMC and

the PCC and precuneus (Figure 8h, Table S8a). The strongest

changes in the theta band were increased connections between the

mFG and the PCC, precuneus, and precentral gyrus, and between

the PcG and the insular cortex and ICC (Figure 8i, Table S8b). The

alpha band showed the largest increases primarily between the FP

and the lOC, CC, precuneus, and ICC (Figure 8j, Table S8c). The

strongest increases in the low beta band were between the lOC and

the PcG, precuneus, CC, precentral gryus, inferior temporal gyrus

(iFG), and temporal fusiform cortex (TFC; Figure 8k, Table S8d). In

the high beta band, the strongest increases were between the

FP/ACC/mFG and the PCC and precuneus (Figure 8l, Table S8e). In

contrast, the connectivity estimates from the phase-based analysis

were substantially less susceptible to modulation by midazolam and

primarily showed decreases in connection strengths across the

bands (Figure 8m–q). The strongest decreases in the delta band

occurred between the ACC and areas of the occipital cortex, and

between the middle temporal gyrus (mTG) and areas of the frontal

cortex (Figure 8m, Table S9a). This band also showed two strong

increases, between the precuneus and lOC, and between sFG and

precentral gyrus. The theta band showed the strongest reductions in

connectivity between the SMC and areas of the frontal lobe, and the

PcG (Figure 8n, Table S9b). Reductions in connectivity between the

temporal pole (TP) and the thalamus, and between the lOC and the

postcentral gyrus were found in the alpha band (Figure 8o,

Table S9c). The low beta band showed the strongest reductions in

connectivity between the limbic system and the FP, and between

the SMC and the occipital and temporal lobes (Figure 8p, Table S9d).

In the high beta band, the strongest reductions were centered ante-

riorly, primarily within the occipital cortex and between this area and

the PCC/precuneus (Figure 8q, Table S9e).

To determine commonalities with the results from the dual

regression analysis in the first part of the article, we assessed the all-

to-all correlation changes after ketamine between nodes within the

pDMN, and those within the SMN after midazolam (Figures S3 and

S4). As with dual regression, reductions within the pDMN were seen

primarily with pipelines which utilized ICA denoising, and increases

within the SMN seen predominantly after the pipelines containing

only WM/CSF/PNM regression. Repeated measures one-way ANO-

VAs were performed (Mauchley's test indicated that the assumption
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of sphericity had been violated (pDMN: χ2 = 58.13, p < .001, SMN:

χ
2 = 396.68, p < .001), so Greenhouse–Geisser corrected tests are

reported (pDMN: ε = .227, SMN: ε = .189)). Results showed that the

choice of pipeline significantly affected changes in connectivity, and

as with the dual regression, effect sizes were large (ketamine and

pDMN: F(1.3, 9.5) = 15.02, p = .002, η2 = .682, midazolam and SMN:

F(1.1, 26.1) = 25.12, p > .001, η2 = .522).

In summary, results from the fMRI pipelines containing only CSF

and WM or PNM regression (SIMPLE, SIMPLE + PNM, and PNM-

only) were strikingly different to those utilizing ICA to remove

spatially discrete noise sources. To formally compare the EEG and

fMRI data, we next ran within-participant correlations between the

EEG and fMRI pre, post, and difference matrices (see Figure 1 for

schematic). Due to the similarities between pipelines containing

only CSF and WM or PNM regression and those containing

ICA-denoising, for clarity we ran this analysis on only two fMRI pipe-

lines; those best representing these two groupings (SIMPLE and

ICA-only).

3.9 | Comparing connectivity modulations

between fMRI and EEG

Here the connectivity matrices and their modulations between the

SIMPLE and ICA-only fMRI pipelines (chosen to represent the two

groupings of pipelines which had similar results; those containing WM

and CSF or PNM regression, and those containing ICA-denoising) and

the orthogonalised power envelopes and phase-lag index EEG data

for five different frequency bands (delta, theta, alpha, low beta, high

beta) were compared by correlating the all-to-all connectivity values

between modalities for each subject and then performing population

statistics (Figure 9, see Figure 1 for method schematic). Connectivity

estimates for pre- and postdrug based on the power envelope were

more closely correlated with both pipelines of fMRI data compared to

wPLI. The strongest correlations were found in the alpha and low beta

bands, for all three drug conditions (see Table 1 for the significant

results). None of the correlations of drug contrasts (change in connec-

tivity pre- vs. postadministration) reached significance.
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F IGURE 9 Correlations between EEG and fMRI whole-brain connectomes. Line graphs depicting the Pearson correlation values between the

upper triangles of the connectivity matrices of each band of EEG data derived from orthogonalising and correlating the power envelope (a–f), or

based on phase measurements (g–l) and those from two fMRI preprocessing pipelines: one using only global signal regression pipeline (SIMPLE

[a–c, g–i]) and one using no global signal regression (ICA-only [d–f, j–l]). Stars depict significant results of one sample t-tests on the EEG-fMRI

correlations (p < .0017), determining difference to zero, for each band. This was calculated for predrug data (blue), post-drug (red), and on the

difference (post-pre) matrices (green)
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4 | DISCUSSION

4.1 | Impacts of fMRI preprocessing on ICA and

dual regression

This study evaluated the impact of physiological noise on the pharma-

cological modulation of ICA-derived RSNs using seven preprocessing

pipelines that utilized different amounts and types of noise regression.

Non-neuronal physiological processes, particularly those which lead

to changes in CBF, cause global fluctuations in T2* BOLD signals

(Power et al., 2018; Power, Plitt, Laumann, & Martin, 2017). These

fluctuations lead to positive biases in apparent functional connectivity,

which may vary across conditions in a pharmacological design (Glasser

et al., 2016; Power et al., 2017). The simplest method to clean the

BOLD signal is to remove the global mean (Anticevic et al., 2015;

Dandash et al., 2015; Scheidegger et al., 2012), however, it has been

argued that global mean regression could impact functional networks

that are spatially widespread (Bright & Murphy, 2015; Glasser et al.,

2018), introducing negative biases in connectivity metrics (Murphy,

Birn, Handwerker, Jones, & Bandettini, 2009). Additionally, some

global fluctuations have been shown to correlate with arousal state

(Chang et al., 2016; Wong, DeYoung, & Liu, 2016) and global

TABLE 1 Correlations between fMRI

and EEG connectivity matrices
Drug FMRI pipeline EEG metric EEG band Condition R-value p-value

Ketamine SIMPLE Power Alpha Predrug .081 <.0001

Ketamine SIMPLE Power Low-beta Predrug .081 <.0001

Ketamine SIMPLE Power Alpha Postdrug .045 <.0001

Ketamine SIMPLE Power Low-beta Postdrug .046 .0007

Ketamine SIMPLE Power High-beta Postdrug .035 .0003

Ketamine ICA-only Power Alpha Predrug .070 <.0001

Ketamine ICA-only Power Low-beta Predrug .060 <.0001

Ketamine ICA-only Power Alpha Postdrug .043 <.0001

Ketamine ICA-only Power High-beta Postdrug .023 .0003

Ketamine ICA-only Phase Delta Postdrug −.025 .0009

Midazolam SIMPLE Power Alpha Predrug .11 <.0001

Midazolam SIMPLE Power Low-beta Predrug .084 <.0001

Midazolam SIMPLE Power Theta Postdrug .070 <.0001

Midazolam SIMPLE Power Alpha Postdrug .11 <.0001

Midazolam SIMPLE Power Low-beta Postdrug .14 <.0001

Midazolam ICA-only Power Alpha Predrug .085 <.0001

Midazolam ICA-only Power Low-beta Predrug .065 <.0001

Midazolam ICA-only Power Theta Postdrug .049 <.0001

Midazolam ICA-only Power Alpha Postdrug .073 <.0001

Midazolam ICA-only Power Low-beta Postdrug .11 <.0001

Placebo SIMPLE Power Alpha Predrug .11 <.0001

Placebo SIMPLE Power Low-beta Predrug .086 <.0001

Placebo SIMPLE Power Alpha Postdrug .10 <.0001

Placebo SIMPLE Power Low-beta Postdrug .12 <.0001

Placebo ICA-only Power Alpha Predrug .089 <.0001

Placebo ICA-only Power Low-beta Predrug .075 <.0001

Placebo ICA-only Power Theta Postdrug .034 .0011

Placebo ICA-only Power Alpha Postdrug .079 <.0001

Placebo ICA-only Power Low-beta Postdrug .085 <.0001

Placebo SIMPLE Phase Delta Predrug −.024 .0004

Placebo SIMPLE Phase Alpha Predrug .037 .0002

Placebo ICA-only Phase Alpha Predrug .032 .0003

Placebo ICA-only Phase Low-beta Postdrug .025 .0001

Note. Displayed here are the Bonferroni-corrected significant results of one-sampled t-tests on the R-

values (SE in brackets) for each EEG band for each comparison. These were calculated for both the

SIMPLE pipeline (CSF and WM regressors) and the ICA-only pipeline for fMRI, and the orthogonalised

power envelope and phase-based connectivity metrics for EEG.
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electrophysiological signals (Schölvinck, Maier, Ye, Duyn, & Leopold,

2010; Wen & Liu, 2016). The most common approach to noise

removal in pharmacological fMRI studies is a more indirect method of

accessing these global fluctuations: regressing out average CSF and

WM signals (Bonhomme et al., 2016; Grimm et al., 2015; Joules et al.,

2015; Khalili-Mahani et al., 2015; Mueller et al., 2018; J. J. Wong,

O'Daly, Mehta, Young, & Stone, 2016), like in our SIMPLE pipeline.

Additionally, physiological monitoring of cardiac and respiratory

cycles, and end-tidal CO2 levels, can allow for the development and

removal of regressors based on these variables (Birn, Diamond,

Smith, & Bandettini, 2006; Chang et al., 2009; Chang & Glover, 2009;

Glover et al., 2000; Shmueli et al., 2007). However, these may incom-

pletely remove global fluctuations based on noise (Power et al., 2017).

We recorded these signals and included their derived regressors in

three of our pipelines: by themselves, with the CSF and WM variables,

and with additional regressors derived from ICA. The visual identifica-

tion of artefacts through spatial ICA (Griffanti et al., 2014) allows

regression of noise sources that are spatially distinct. We ran ICA-

denoising by itself for one of our pipelines, however, mathematically

spatial ICA cannot separate globally structured noise from the data

(Glasser et al., 2016; Power et al., 2017) so we also included two pipe-

lines combining ICA regressors with CSF and WM or PNM regressors.

The most striking and consistent result was the large differences

found between pipelines which included ICA-denoising and those that

were restricted to CSF and WM or PNM regression only.

With our placebo condition, we compared six different

preprocessing pipelines to the most commonly used method in the liter-

ature; regressing out average CSF and WM signals (SIMPLE; Figures 3

and 6a). Adding PNM regressors (Figure 3c) had less of an impact than

including ICA-derived regressors (Figure 3d–f) and using PNM regres-

sors alone (Figure 3b) often resulted in predominantly increased con-

nectivity (SMN, VN, aDMN), possibly reflecting remaining spurious

positive correlations. When additional regressors are added to a GLM,

not only are the degrees of freedom reduced, the risk of mistakenly

adding information that looks like signal back into the dataset is height-

ened. To this end, we ran a pipeline (phase-randomized) that included

the CSF and WM regressors, with the addition of artificially created

noise regressors to match the number used in our most extensive pipe-

line (ICA + PNM; Bright & Murphy, 2015). This pipeline showed

decreased connectivity compared to the SIMPLE pipeline (Figure 3g),

but this was almost always limited to inside the borders of the compo-

nent, potentially representing only a loss of degrees of freedom: remov-

ing signal, but not adding noise. One could conclude from this that the

increased number of regressors from ICA denoising does reduce the

power, however the more global reduction seen with these pipelines

could be representative of the components being better described after

this preprocessing step; more distinct from other areas of the brain.

While adding true noise regressors to a GLM removes variance

associated with the actual confound (Power et al., 2014), it has also

been demonstrated to remove additional variance at random, includ-

ing what is argued to be signal because it contains distinct RSN struc-

tures (Bright & Murphy, 2015). Pharmacological studies may require

different approaches due to the change in noise volume when a drug

is introduced; additional nuisance regressors may become justifiable

as the noise increases (Bright & Murphy, 2015). This makes comparing

datasets with and without drug difficult and may result in accepting a

certain amount of signal loss to more accurately compare true signal.

If methods are more successful at cleaning predrug than postdrug,

then the latter, noisier section may retain more spurious positive cor-

relations, which would look like an increase in connectivity compared

to predrug. Additionally, different drugs may require different

amounts of cleaning depending on their modulation of physiological

parameters. Indeed, the drugs used here differ in this respect; keta-

mine significantly increased heart rate, blood pressure, and respiratory

volume, and decreased end-tidal CO2, while midazolam only signifi-

cantly decreased blood pressure (Figure 2), similar to previous ana-

lyses on these drugs (Michaloudis et al., 1998; Reinsel et al., 2000).

We assessed drug modulations of the RSNs for each pipeline. Keta-

mine reduced connectivity within all networks (Figures 4 and 6b), unlike

some previous research where no changes within the VN (Niesters et al.,

2012) and DMN (Mueller et al., 2018; Niesters et al., 2012) were found.

Reductions similar to those found with our SIMPLE pipeline within the

DMN were also found by Bonhomme et al. (2016): these authors used

two dosing levels, with the lowest being most similar to ours, and their

preprocessing like our SIMPLE pipeline. Interestingly, at higher doses

they found further reductions in the DMN, as we did when using more

extensive cleaning strategies (ICA-denoising), and other networks also

began to disintegrate. Midazolam caused increases in lower level sensory

networks (SMN, VN), and decreases in two of the higher-level cognitive

networks (rFPN, pDMN; Figures 5 and 6c). These results were similar to

previous studies (Greicius et al., 2008; Kiviniemi et al., 2005; Liang et al.,

2015), with the exception of one finding no change in the SMN

(Kiviniemi et al., 2005). Overall, the general locations where connectivity

to the RSNs was significantly pharmacologically modulated, and the

direction of these changes, were the same across all pipelines, however

those involving only CSF or WM and PNM regression demonstrated

stronger and more widespread changes (predominantly increases) after

midazolam, whereas those involving more extensive cleaning (greater

numbers of regressors [ICA + PNM, ICA-only, SIMPLE + ICA]) resulted

in greater modulation (predominantly decreases) after ketamine.

This pattern could represent different noise structures caused by

the two drugs; more extensive cleaning on the dataset which modu-

lated fewer physiological parameters (midazolam) removed too much

signal to reveal the differences between pre- and postdrug, whereas

when more different types of noise were involved (with ketamine) the

ratio of removed signal-to-noise was reduced, allowing us to see

changes in the remaining signal. Modulations of RVT (Birn et al., 2006),

HR (Shmueli et al., 2007), and CO2 (Birn et al., 2006) have been shown

to cause CBF fluctuations in regions with high blood volume, particu-

larly the occipital and posterior cingulate cortices, potentially indicating

that for drugs that significantly alter these variables such as ketamine,

the regression of CSF and white matter signals would be inadequate to

remove these confounds (Murphy et al., 2013). Midazolam only signifi-

cantly changed BP, however spontaneous BP modulations have been

shown to predict up to 60% of CBF fluctuations in the middle cerebral

artery (Mitsis, Poulin, Robbins, & Marmarelis, 2004), and substantial

1488 FORSYTH ET AL.



transient changes cause spatially widespread modulation of BOLD acti-

vation (Harper, Bandler, Spriggs, & Alger, 2000; Kalisch, Elbel, Gössl,

Czisch, & Auer, 2001; Wang et al., 2006). While cerebral

autoregulatory mechanisms hold CBF constant through arterial blood

pressure fluctuations of 50–150 mmHg, delays in these mechanisms

can lead to alterations in CBF, confounding the BOLD signal, which

may also be correlated with the autoregulatory mechanisms them-

selves (Kontos et al., 1978; Lang et al., 1999; Whittaker, Driver, Venzi,

Bright, & Murphy, 2019). Furthermore, midazolam caused mild, un-

significant decreases in RVT and increases to CO2, and hypercapnia

states have been shown to slow the restoration of CBF (Aaslid, Lin-

degaard, Sorteberg, & Nornes, 1989). Potentially the changes to blood

pressure with midazolam, unaccompanied by substantial changes in heart

rate, and supplemented by mild changes to RVT and end-tidal CO2 in an

opposite direction to ketamine's modulations, caused global artefacts

that were well described by the variance in the CSF and WM signals.

Indeed, we found that regression of these signals caused a greater reduc-

tion in temporal SD after midazolam compared to ketamine (Table S10).

Nevertheless, a more parsimonious explanation is that the simpler

preprocessing pipelines were inadequate at cleaning pharmacological

simultaneous EEG/fMRI data. If the simpler pipelines were cleaning the

postdrug data less effectively than the predrug, then remaining spurious

positive correlations caused by physiological noise in the former may

have artificially inflated connectivity increases with midazolam, and

masked connectivity decreases with ketamine. Head motion at the sub-

millimeter level has been shown to cause spurious correlations in resting-

state fcfMRI studies (Maknojia, Churchill, Schweizer, & Graham, 2019;

Power et al., 2014; Van Dijk, Sabuncu, & Buckner, 2012), and it becomes

particularly problematic with pharmacological simultaneous imaging, due

to discomfort caused by the EEG cap, and drug-induced motion. When

looking at the spatial maps of the average temporal variance (Figure S7

and Table S10), we see that while CSF and WM regression removed a

substantial amount of variance in areas known to be affected by head

motion from the midazolam dataset, both conditions retained high tem-

poral variance in some of these areas until ICA-denoising was run. Nota-

bly, in fMRI data, head motion artefact can be seen in the superior

sagittal sinus, which runs between the areas making up the SMN, and this

location had many voxels with high temporal variance, especially in the

midazolam data. While some groups (Greicius et al., 2008; Liang et al.,

2015) have found midazolam-induced increases in BOLD SMN connec-

tivity, the one study which scrubbed volumes of high motion (>.05 mm)

found no change (Kiviniemi et al., 2005). Potentially, our fMRI results

were influenced by motion artefact near the SMN, and the extensive ICA

denoising allowed correction of this in the fMRI data.

In conclusion, we have shown that different preprocessing pipelines

can have a substantial impact on ICA-derived RSNs and their pharmaco-

logical modulation. Determining an ideal amount of cleaning may rely on

assessing the amount and nature of physiological noise of the specific

drug under investigation. However, with the current evidence available,

researchers utilizing simultaneous EEG/fMRI may have to accept a certain

amount of signal loss by using more extensive denoising pipelines, such as

those incorporating ~50 noise regressors from ICA analysis, to be more

confident that the remaining signal is accurately representing drug action.

4.2 | Comparing whole-brain connectomes from

EEG and fMRI

We next investigated the pharmacological modulation of whole-brain

connectivity, using simultaneous EEG/fMRI, and assessed whether the

patterns seen from the BOLD signal are related to those from the dif-

ferent EEG bands (Figures 7 and 8). When formally comparing the two

modalities (Figure 9), we found the strongest relationship to the hemo-

dynamic correlation structure, both pre- and postdrug, to be from the

orthogonalised power envelopes in the alpha and beta bands. This was

is in line with a previous nonpharmacological report (Hipp & Siegel,

2015), where dominance of the alpha and beta bands was found if not

corrected for difference in SNR across frequency ranges. Deligianni

et al. (2014) found that connectomes in the delta through alpha bands

(1–13 Hz) best predicted rsfMRI connectomes. Connectivity based on

the EEG power envelope showing a stronger relationship to fMRI than

that based on phase measurements stands to reason, as changes occur

over similar time scales to the BOLD signal, and the intrinsic coupling it

reflects is more closely related to structural connectivity (Engel et al.,

2013). Additionally, phase-based connectivity analyses assume connec-

tivity is instantaneous, unlike power-based metrics, making the latter

more flexible for exploratory analyses.

In the current study, no significant correlation between the phar-

macological modulations of each modality was found. This could be

explained in two ways; first, there may be no relationship between the

pharmacological modulations of a Pearson's correlation matrix of fMRI

data and our two electrophysiological connectivity metrics. This could

be due to differences in the neural sources detected by the two modali-

ties, or the changes to the fMRI connectivity could be dominated by

vascular effects, overshadowing any true neural changes that could be

mapped to the EEG data. Secondly, there may be statistical power

issues; either limiting our ability to find a significant relationship when

reducing the number of connections to those which were pharmacolog-

ically modulated as opposed to all 69,423 connections, or, alternatively,

perhaps the larger number of connections when using the whole grid

inflated our positive results pre- and postdrug. Hipp and Siegel (2015)

showed that their correlations in the alpha and low-beta bands may

have been partially driven by coincidental correlations due to relatively

increased power in these bands. A similar situation could have occurred

here, not just with our EEG power differences, but also when we com-

pare the two fMRI pipelines. The more extensive ICA-denoising pipe-

line has fewer degrees of freedom than the SIMPLE one, which may

mean that the differences in power between the two pipelines slightly

inflated the SIMPLE pipeline's correlations with the EEG data.

While we found no formal relationship between the pharmacologi-

cal modulations of the two modalities, if this was due to EEG's poor

spatial resolution hindering the node-for-node analysis, particularly

when the number of nodes is limited as it was in the difference

matrices, then visually inspecting the overall direction and general

locations of the changes may give some insight into which fMRI pipe-

lines were modulated in a similar fashion to the EEG data. After keta-

mine administration, the electrophysiological metric derived from

the power envelope more closely resembled changes from pipelines
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using ICA-denoising; the alpha and beta bands showed reduced con-

nectivity, primarily involving occipital and sensory-motor areas respec-

tively (Figure 7j,k), similar to previous findings using dynamic causal

modelling (Muthukumaraswamy et al., 2015). The ICA pipelines' results

(Figure 7d–f) also showed predominantly reduced connectivity across

the brain, with some of the strongest changes after ICA- occurring

within the sensory-motor cortex. After midazolam administration, the

power-based electrophysiological connectivity more closely resembled

the direction and general spatial pattern of those pipelines containing

only CSF and WM or PNM regression (Figure 8a–c); global increases in

connectivity were seen between 1 and 26 Hz (Figure 8h–k; Figure S1

shows the underlying spatial structure of the top 1% of connectivity

changes in these bands), with the strongest increases between anterior

and posterior regions. While not a formal analysis, this pattern of more

cleaning (ICA pipelines) with a drug which introduced more different

types of physiological noise (ketamine), and less cleaning (only CSF and

WM or PNM regression) with a drug that only significantly modulated

BP (midazolam) best resembling EEG results suggests that the fMRI

pipeline decisions should be based on the specific noise structure of

the drug. However, until the precise effects of particular noise struc-

tures are better understood, a more conservative approach utilizing

extensive ICA denoising may be the more appropriate choice; accepting

possible signal loss to retain confidence in residual data.

Last, it should be noted that unlike the power-envelope correla-

tions, the phase-based electrophysiological connectivity metric pro-

duced far fewer changes in connectivity after drug administration;

generally, these were increases after ketamine (Figure 8m–q), apart

from in the alpha band as found previously (Blain-Moraes, Lee, Ku,

Noh, & Mashour, 2014; Vlisides et al., 2018), and decreases after

midazolam (Figure 8m–q), also previously found (Ferrarelli et al.,

2010), although a recent article found no change in overall functional

connectivity using PLI (Numan et al., 2019). While the electrophysio-

logical connectivity metric derived from the power envelope more

closely resembled fMRI, this method results in a loss of some of the

rich temporal information that electrophysiological methods can pro-

vide such as true zero-phase synchrony. This would imply that con-

tinuing to use both modalities will allow us to gain a fuller view of the

pharmacological modulation of neural activity.

4.3 | Limitations and conclusions

The main limitation of this study, as with most fMRI studies, is the lack

of a gold standard to compare techniques with. This was an exploratory

study, aiming to assess the pharmacological modulation of connectivity

by ketamine or midazolam, and how preprocessing decisions may affect

these results. As such, each session was treated as a separate study

when running the ICA and dual regression, to reduce the likelihood of

the loss of data specific to each drug. However, running three ICAs

may have introduced different noise patterns into the components, and

this limited our ability to make conclusions about general modulations

to the RSNs. Direct comparisons between drugs was outside the scope

of this study; future research could do this by running ICA and dual

regression across sessions, and for clarity use drugs that primarily differ

across only one physiological parameter, and have uncomplicated phar-

macology, with specific receptor affinities. Another limitation is the

absence of field map collection in our protocol, which may have led to

some signal distortion in regions where the magnetic field was inhomo-

geneous (Wilson et al., 2002). The correct denoising pipeline may need

to reflect the amount and type of noise introduced by the drug, how-

ever pharmacological simultaneous imaging is particularly affected by

head motion artefacts and utilizing more extensive cleaning strategies

including ICA denoising can balance potential neural signal loss with

the confidence that remaining signal represents true drug effect.

Defining the best parcellation for simultaneous EEG/fMRI analysis

was beyond the scope of this article, and the use of 264 nodes may

have caused some redundancy in the EEG connectomes due to the

poor spatial resolution of this modality. However, we note that it is a

trade-off; selecting a large number of nodes reduces the risk of

under-sampling the fMRI data, as this may have missed activity repre-

sented in the EEG, whereas over-sampling the EEG data does not

result in loss of information. However, this choice may affect the sta-

tistical power to define true correlations between the modalities,

hence the importance of viewing the brain-maps and connectomes,

assessing general spatial locations and directions of connectivity

changes. There is the possibility that the EEG contains small motion

artefacts (Fellner et al., 2016) that our rejection and correction

methods were not able to capture, thereby limiting its usefulness as a

direct measure of neural activity to compare the BOLD signal fluctua-

tions with. However, our EEG pharmacological modulations look strik-

ingly similar to previous MEG estimates (Hall, Barnes, Furlong, Seri, &

Hillebrand, 2010; Muthukumaraswamy et al., 2015), although in the

future the addition of hardware to better capture participant motion

would be a valuable addition to studies such as this (Abbott et al.,

2015; van der Meer et al., 2016). Additionally, the methods utilized in

this study do not represent an exhaustive analysis of the different

methodologies used to derive connectivity measures in either fMRI or

EEG; the lack of a formal relationship found between the modalities

of drug modulations to functional connectivity does not preclude

future positive findings, which could involve using partial correlation

measures to disentangle indirect and direct connections, or comparing

dynamic connectivity. Nevertheless, the limited relationship between

these electrophysiological metrics and that of a commonly derived

fcMRI method is notable and would suggest caution in making cross-

modal conclusions based on results using these methodologies. EEG

data can also help us to improve upon our fMRI preprocessing

methods by providing a direct measure of neural activity, however,

determining the metric that utilizes the most similar neural informa-

tion as the BOLD signal requires further investigation.
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