001     867739
005     20210130003849.0
024 7 _ |a 10.1080/15472450.2019.1621756
|2 doi
024 7 _ |a 1547-2442
|2 ISSN
024 7 _ |a 1547-2450
|2 ISSN
024 7 _ |a 2128/26024
|2 Handle
024 7 _ |a altmetric:92186582
|2 altmetric
024 7 _ |a WOS:000542811600001
|2 WOS
037 _ _ |a FZJ-2019-06354
082 _ _ |a 380
100 1 _ |a Tordeux, Antoine
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Prediction of pedestrian dynamics in complex architectures with artificial neural networks
260 _ _ |a Philadelphia, Pa.
|c 2020
|b Taylor and Francis, Inc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1604326420_30548
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pedestrian behavior tends to depend on the type of facility. The flow at bottlenecks, for instance, can exceed the maximal rates observed in straight corridors. Consequently, accurate predictions of pedestrians movements in complex buildings including corridors, corners, bottlenecks, or intersections are difficult tasks for minimal models with a single setting of the parameters. Artificial neural networks are robust algorithms able to identify various types of patterns. In this paper, we will investigate their suitability for forecasting of pedestrian dynamics in complex architectures. Therefore, we develop, train, and test several artificial neural networks for predictions of pedestrian speeds in corridor and bottleneck experiments. The estimations are compared with those of a classical speed-based model. The results show that the neural networks can distinguish the two facilities and significantly improve the prediction of pedestrian speeds.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 1
|e Corresponding author
700 1 _ |a Seyfried, Armin
|0 P:(DE-Juel1)132266
|b 2
700 1 _ |a Schadschneider, Andreas
|0 0000-0002-2054-7973
|b 3
773 _ _ |a 10.1080/15472450.2019.1621756
|g p. 1 - 13
|0 PERI:(DE-600)2156104-7
|n 6
|p 556-568
|t Journal of intelligent transportation systems
|v 24
|y 2020
|x 1024-8072
856 4 _ |y Published on 2019-06-04. Available in OpenAccess from 2020-06-04.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/867739/files/ArticleNN_JITS_REV2.pdf
856 4 _ |y Published on 2019-06-04. Available in OpenAccess from 2020-06-04.
|x pdfa
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/867739/files/ArticleNN_JITS_REV2.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:867739
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132077
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132266
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J INTELL TRANSPORT S : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21