Poster (After Call) FZJ-2019-06368

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Topotactic transition mechanisms in SrCoO$_{2.5+x}$ films

 ;  ;  ;  ;  ;  ;  ;  ;

2019

5th International School of Oxide Electronic, ISOE2019, CargeseCargese, France, 25 Jun 2019 - 5 Jul 20192019-06-252019-07-05

Abstract: Transition metal oxides are a big research topic, because they offer a wide range of possible applications, particularly in information and energy technology. One such system is strontium cobaltite (SrCoO2.5+x), which exists in two distinct topotactic phases, depending on the oxygen content. SrCoO3 is a ferromagnetically ordered metal with a Curie temperature of 305 K, but the system becomes an antiferromagnetic insulator with a Néel temperature of 570 K, when the oxygen content is decreased to SrCoO2.5. Along with this magnetic transition, the structure changes from perovskite to the orthorhombic brownmillerite, with the missing oxygen atoms forming vacancy channels [1]. Because of the multivalent Co states and high oxygen mobility it is a promising material for device applications [2]. To control the oxygen content, several possibilities exist. We focus on annealing in oxidising conditions and applying variable strain with a piezoelectric substrate to the film.We grow thin films of SrCoO2.5 by molecular beam epitaxy on SrTiO3 and LSAT substrates for investigations of oxygen annealing induced transitions and 0.7(Pb(Mg1/3Nb2/3)O3)-0.3(PbTiO3) (PMN-PT), a piezoelectric substrate, to study the possibility of a strain dependent oxidation state.To be able to successfully control the oxidation state and transfer strain from the substrate to the film, a high sample quality and epitaxy is mandatory. Thus, we present the results of the film growth and quality, as well as first results of the magnetic characterisation by SQUID and neutron reflectometry for annealed and strained samples.[1] C.K. Xie et al., Appl. Phys. Lett. 99, 2011 [2] H. Jeen et al., Nature Materials 12, 2013

Keyword(s): Magnetic Materials (1st) ; Information and Communication (1st) ; Magnetism (2nd)


Contributing Institute(s):
  1. JCNS-FRM-II (JCNS-FRM-II)
  2. Streumethoden (JCNS-2)
  3. Physik Nanoskaliger Systeme (ER-C-1)
  4. Streumethoden (PGI-4)
Research Program(s):
  1. 524 - Controlling Collective States (POF3-524) (POF3-524)
  2. 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621) (POF3-621)
  3. 6G15 - FRM II / MLZ (POF3-6G15) (POF3-6G15)
  4. 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) (POF3-623)
Experiment(s):
  1. MARIA: Magnetic reflectometer with high incident angle (NL5N)
  2. MBE-MLZ: Molecular Beam Epitaxy at MLZ

Appears in the scientific report 2019
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-FRM-II
Institute Collections > ER-C > ER-C-1
Institute Collections > JCNS > JCNS-2
Document types > Presentations > Poster
Institute Collections > PGI > PGI-4
Workflow collections > Public records
Publications database

 Record created 2019-12-09, last modified 2024-05-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)