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ABSTRACT

We report on a detailed experimental study of the structure and short-time dynamics in fluid-regime suspensions of soft core-shell spheri-
cal particles with different molecular weights of the chains forming the soft outer shell, and therefore different degrees of particle softness,
using 3D dynamic light scattering (3D-DLS). Owing to the particle softness, the liquid-crystal coexistence regime is found to be broader than
that of hard-sphere (HS) suspensions. Static light scattering in the dilute regime yields form factors that can be described using a spherical
core-shell model and second virial coefficients A2 > 0 indicative of purely repulsive interactions. The particle-particle interactions are longer
ranged for all considered systems except those of the smaller molecular weight chain grafted particles which show a HS-like behavior. 3D-DLS
experiments in the concentrated regime up to the liquid-crystal transition provide the short-time diffusion function,D(q), in a broad range of
scattering wavenumbers, q, fromwhich the structural (cage) and short-time self-diffusion coefficientsD(qm) andDS =D(q≫ qm), respectively,
are deduced as functions of the effective particle volume fraction, ϕ = c/c∗, where c∗ is the overlap concentration, calculated using the hydro-
dynamic particle radius, RH . The size of the nearest-neighbor cage of particles is characterized by 2π/qm, with D(q) and the static structure
factor S(q) attaining at qm the smallest and largest values, respectively. Experimental data of D(qm) and DS are contrasted with analytic theo-
retical predictions based on a simplifying hydrodynamic radius model where the internal hydrodynamic structure of the core-shell particles
is mapped on a single hydrodynamic radius parameter γ = RH/Reff , for constant direct interactions characterized by an (effective) hard-core
radius Reff . The particle softness is reflected, in particular, in the corresponding shape of the static structure factor, while the mean solvent
(Darcy) permeability of the particles related to γ is reflected in the dynamic properties only. For grafted particles with longer polymer chains,
D(qm) andDS are indicative of larger permeability values while particles with shorter chains are practically nonpermeable. The particle softness
is also evident in the effective random close packing fraction estimated from the extrapolated zero-value limit of the cage diffusion coefficient
D(qm).

Published under license by AIP Publishing. https://doi.org/10.1063/1.5091845., s

I. INTRODUCTION

Solutions of homopolymer chains and suspensions of rigid
colloidal particles are two important classes of soft matter sys-
tems. While to a certain extent they behave similarly in the liquid
phase regime, their detailed dynamics in concentrated systems is
quite different, as reflected by the different hydrodynamic interac-
tions (HIs) mediated by the associated local solvent flow pattern.

Different from rigid colloidal particles which typically are solvent-
impermeable, the flexible polymer coils are solvent permeable under
good solvent conditions. While the HIs between mobile colloids in
the fluid phase are nonscreened, in concentrated polymer solutions
with concentrations c above the overlap concentration c∗, there is
hydrodynamic screening operative owing to the (transient) forma-
tion of interchain and intrachain entanglement contacts.1 There is
thus a distinctly different concentration dependence of diffusion and
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viscoelastic properties dictated by the different strength and range of
the HIs.2–10

Understanding the effect of HIs in dispersions of composite
particles of intermediate character such as polymer grafted colloids
or soft core-shell particles is still a largely open issue, providing a
good motivation for experimental studies using well-characterized
model systems. Well-studied systems with intermediate colloid-
polymer properties are microgel particles,7,10–14 multiarm starlike
polymers or micelles, and core-shell particles with either a cross-
linked polymer shell or dense grafted polymer chains. By vary-
ing the number of grafted polymer chains (or polymer arms) or
the amount of crosslinking, the system behavior can be changed
from that of nearly rigid colloidal particles to that of soft repul-
sive colloids (when highly grafted small polymer chains are used)
and eventually to that of dispersions where the ultrasoft poly-
mer chain dynamics dominates (for example, in the case of high-
molecular-weight grafted polymer chains).6,9,15 Recently, Gupta et
al.16 studied the phase behavior of soft copolymers in order to
establish a generalized phase diagram used in turn to investi-
gate the microstructural influence on the equilibrium dynamics
of soft colloids. Based on a simple coarse-grained model for the
interparticle interaction potential, they determined an interaction
length and presented a quantitative comparison between theory and
experiment.

For hard-sphere (HS) suspensions, the self-diffusion dynamics
both at short and long times slows down with increasing volume
fraction, with the long-time self-diffusion coefficient DL becoming
practically zero at a glass transition point and the short-time coeffi-
cient DS vanishing at random close packing (RCP). The decrease in
the short-time self-diffusion coefficient DS with increasing volume
fraction has been quantified by Stokesian Dynamics (SD) simula-
tions of Brownian hard spheres by Banchio and Brady17 up to vol-
ume concentrations approaching the random close packing volume
fraction ϕ ≈ 0.644 of monodisperse spheres. The coefficientDS is the
large wavenumber limit of the short-time diffusion function D(q)
routinely probed in dynamic light scattering (DLS) experiments as a
function of the scattering wavenumber q = (4πν/λ) sin(θ/2) with ν as
the optical refractive index of the medium, λ as the wavelength of the
laser light in vacuum, and θ as the scattering angle. At larger concen-
trations,D(q) significantly deviates from the single-particle diffusion
coefficient D0, reflecting thus the combined effects of the equilib-
rium structure and HIs on short-time collective diffusion across a
distance ∼2π/q. DLS results for the D(q) of colloidal hard spheres
are discussed, e.g., in Refs. 18 and 19. Owing to the “stiffness” of the
nearest-neighbor cage formed around each particle, D(q) is small-
est at q = qm. The appearance of a distinct slowing-down of D(q)
near the principal peak position, qm, of S(q) was likewise reported for
suspensions of rigid charge-stabilized colloidal particles.8 The direct
interactions in these lower-salinity suspensions can be described by
a soft repulsive interparticle potential of Yukawa type, and dynamic
properties such as D(q) can be accurately predicted in theory and
SD simulation on basis of this effective pair potential, provided the
salient HIs are accounted for.8,20,21 The suspensions of the non-
ionic microgel particles studied by Eckert and Richtering7 show
a strong slowing down of collective dynamics around qm that is
reminiscent of rigid particles’ suspensions, despite the fuzzy char-
acter of the microgel surfaces. For the ionic PNiPAM microgel
suspensions studied by Holmqvist et al.,22 a dip in D(q) at qm was

likewise observed which deepens with decreasing temperature T
and increasing concentration. Moreover, for the surfactant micelles
examined by Imai et al.23 that are comprised of a hard core and a
weak longer-ranged repulsive potential, a strong slowing down effect
on D(qm) was observed in the fluid phase regime. Core-shell particle
suspensions investigated by Petekidis et al.4 exhibit a weaker slow-
ing down of collective diffusion at qm mainly due to the lower D(q)
detected at q < qm. On the other hand, although a study of giant PS-
PI diblock micelles by Sigel et al.3 suggested that there is no slowing
down of D(q) around qm, with the average relaxation time from the
DLS experiments’ field correlation function determined via inverse
Laplace transform (based on CONTIN program analysis), careful
analysis of the initial slope of the correlation functions does yield a
clear slowing down around D(qm), similar to all other studies of soft
and hard colloidal particles. More recently, Riest et al.10 reported
an easy-to-use analytic set of methods for calculating short- and
long-time dynamic properties of suspensions of nonionic micro-
gel particles with intrinsic hydrodynamic structure, based on the
hydrodynamic radius model (HRM). The theoretical predictions for
D(q) by this set capture quantitatively the experimental results for
nonionic PNIPAMmicrogels.7 The suspensions of the soft polymer-
grafted colloidal spheres studied by Voudouris et al.9 exhibit struc-
tural and dynamic properties close to those of colloidal hard spheres
when the polymer chains are short, while for long grafted poly-
mer chains there are significant deviations from the hard-sphere
behavior.

In this paper, we investigate the effect of particle softness and
solvent permeability on the structure and dynamics of core-shell
particle composites dispersed in organic solvents, with the particles
consisting of a spherical silica (SiP) core and a shell of highly grafted
polymethylmethacrylate (PMMA) polymer chains. We vary the par-
ticle softness and solvent permeability by changing the molecular
weight of the grafted chains, while keeping nearly constant the sur-
face grafting density and the core size. We compare and discuss
the results for S(q) and D(q) obtained by static and dynamic light
scattering with results obtained by the 3D dynamic light scatter-
ing (3D-DLS) setup to suppress residual multiple scattering at larger
concentrations. The experimental data for D(q) are confronted with
analytic theoretical results based on the simplifying HRM model
where the internal (core-shell) hydrodynamic particle structure is
mapped on a single hydrodynamic radius parameter γ treated as
the only dynamic fitting parameter from which the mean Darcy
permeability of the particles is inferred. On treating the core-shell
particles as effective hard spheres regarding their direct interac-
tions and thus regarding S(q), which is an oversimplification for
extended polymer shells, we take advantage of analytic expressions
for D(qm), D(q = 0), and DS as functions of γ and effective volume
fraction ϕeff .

II. METHODS AND SYSTEMS

A. Materials

Hybrid core-shell particles (PMMA-SiPs) with a spherical silica
(SiP) core and a shell of grafted polymethylmethacrylate (PMMA)
polymer chains were synthesized by surface-initiated atom transfer
radical polymerization (ATRP) of MMA, as reported previously.24

The mean diameter of the silica (SiP) core is 130 nm with a relative

J. Chem. Phys. 151, 024901 (2019); doi: 10.1063/1.5091845 151, 024901-2

Published under license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

standard deviation of 10%, as measured by transmission electron
microscopy. The weight-averaged molecular weight (Mw) of the
PMMA polymer chains is 41 kg/mol for sample P2_41k, 126 kg/mol
for sample P2_126k, and 402 kg/mol for P2_402k, with polydisper-
sity indices (PDIs) 1.25, 1.24, and 1.15, respectively. The surface
grafting density of the PMMA chains on the silica core, σ0, varies
between 0.55 and 0.65 chains/nm2, corresponding about 34 500
grafted chains per particle.

Owing to the high σ0, two shell regions can be distinguished:
(1) a concentrated polymer brush (CPB) regime in which polymer
chains are stretched and (2) an intermediate brush region semidilute
polymer brush (SDPB) of lower polymer density with less stretched
polymer conformations (see Fig. 1). Since for spherical particle
brushes the effective polymer density decreases with increasing dis-

tance r from the particle center according to σeff = σ0(RC/r)2, where
RC denotes the particle core radius, a transition from the concen-
trated to the semidilute polymer solution regime is expected at a
critical distance RDC. This follows from the Daoud-Cotton model
for star polymers according to which RDC = 2υRC(πσ∗)0.5, with σ∗ =
σ0α

2 denoting the dimensionless surface coverage (α is themonomer
length) and υ denoting the Flory-Huggins excluded-volume param-
eter that is approximately equal to b/α, with b as the Kuhn seg-
ment length for an athermal solvent.25 For f chains grafted to the

FIG. 1. Schematics of the core-shell hybrid particle cross section showing the two
polymer brush regions. In the concentrated polymer brush region (CPB), chains
are stretched due to excluded volume effects, while in the semidilute polymer brush
region (SDPB) of thickness L the chain conformations change with increasing dis-
tance from the core, from nearly fully stretched chains to coiled chains of nearly
Gaussian conformation.

surface of the silica core, σ0 = f /(4πR2
C) and RDC ≈ bf 0.5 is the

radius of the core plus CPB region where for the latter, excluded-

volume effects are screened out. The ratio RC/L, with L = RN/
√
6

and RN as the mean polymer end-to-end distance in a good sol-
vent, can serve as a measure for the softness of the core-shell par-
ticles which varies depending on the polymer molecular weight and
the solvent quality. The theoretical overall particle size can be esti-
mated from Rtot = RC + L. Experimentally, Rtot can be determined
as the hydrodynamic radius, RH , measured by Dynamic Light Scat-
tering (DLS), or from Static Light Scattering (SLS), denoted then
as RSLS.

To achieve particle-solvent refractive index matching as
required in order to suppress multiple scattering, we used different
solvent mixtures. Specifically, we used 50%–50% (by volume) of 1,
2-dichloroethane (DE) and o-dichlorobenzene (DCB) for P2_126k,
while a mixture of o-dimethoxy benzene (veratrole) and dimethyl
formamide (DMF) was used for P2_41k and P2_402k to index
match the PMMA shell with optical refractive index νs = 1.489
at laser wavelength λ = 633 nm. For comparison, P2_402k parti-
cles were also dispersed in toluene which is known to be a good
solvent for PMMA polymer chains. The effective densities of the
particles were calculated based on the volume weighted density of
the core, PMMA, and solvent using the equation deff = (dcVc

+ dPMMAVPMMA + d0V0)/(4/3)πR3
H , where c denotes the silica core,

PMMA denotes the PMMA chains, and 0 denotes the solvent. The
calculated deff are 1.16, 1.28, 1.04, and 0.88 g/ml for P2_41k in Ver-
DMF, P2_126k in DCB-DE, P2_402k in Ver-DMF, and P2_402k in
toluene, respectively.

In order to determine the phase diagram of these systems, we
prepared different suspensions in square cells of 4 mm thickness.
Samples were kept at constant room temperature for two days before
visual observation (see the middle panel of Fig. 2). The bottom panel
of Fig. 2 shows the schematic phase diagram for the intermediate
size core-shell, P2_126k, particles dispersed in DCB-DE as a func-
tion of volume fraction, ϕ, deduced from the direct observation,
where liquid, liquid-crystal coexistence, and a fully crystalline phase
(mixture of FCC and HCP) are indicated. In practice, the samples
were prepared bymixing appropriate weight of solvent and polymer;
therefore, the concentration, c, was determined in weight/weight
(wt. %) and was compared with the corresponding overlap concen-
tration. Although the concentration (in wt. %) or the number den-
sity (number of particles per volume) is unambiguously defined,
none of these quantities can be directly used in theoretical mod-
els to describe the dynamics. Instead, the equivalent of the particle
volume fraction is needed where the volume occupied by the parti-
cles is used to describe the extent of their interactions. The volume
fraction ϕ is determined as c/c∗, where c∗ is the overlap mass con-
centration of particles according to c∗ = Mtotal/(4πdeff /3R3

H) (in
weight of polymer per weight of solution), where Mtotal is the total
mass of a core-shell particle with Mtotal = mc + fMw/NA, where mc

is the mass of the core, f is the number of grafted chains, Mw is
the molecular weight of an attached chain, and NA is the Avogadro
number. The c∗ represents the average density of the chain (or par-
ticle) with radius RH , and thus, when the total concentration of the
system is higher than c∗, the chains (or particles) start to interpen-
etrate. In monodisperse hard spheres, this would actually take place
at ϕ = 0.64 (which is the random close packing volume fraction).
Therefore, we should keep in mind that for HSs ϕ = c/c∗ = 0.64
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FIG. 2. Top: Molecular weight dependence of the particle shell thickness h = RH

− Rc (left vertical axis) and hydrodynamic radius RH (right axis) for all consid-
ered core-shell systems. Different colors represent different employed solvents.
Middle: Picture of P2_126k samples at different ϕ where the liquid-crystal coexis-
tence, crystalline phase, and glassy state can be seen. Bottom: Schematic phase
diagram for the P2_126k particle sample in DCB-DE indicating the succession of
different phases.

is where the particles with radius RH start touching. An alternative
common way to effectively determine a volume fraction ϕ in soft
particle suspensions is by fitting the measured zero-shear viscosity,
η, in the dilute regime with the Batchelor-Einstein prediction for

hard spheres, η/η0 ≈ 1 + 2.5ϕ + 5.9ϕ2, with η0 as the solvent viscos-
ity. However, this quadratic order virial expansion expression is for
hard spheres with stick hydrodynamic boundary condition only (no-
slip spheres). While the quadratic order result can be generalized
to soft and permeable particle suspensions, with some numerical
effort regarding the quadratic order (Huggins) coefficient, we stick
to ϕ = c/c∗ as a direct estimate of the volume fraction associated
with the particle hydrodynamics radius, RH . We confront then the
permeable sphere predictions directly with experimental data as a
function of ϕ = c/c∗. According to our direct observations (Fig. 2) for
P2_126k particles in DCB-DE, the liquid-crystal coexistence regime
extends from about ϕ ∼ 0.53 to ∼0.72 where the suspension becomes
fully crystalline. Similar phase diagrams were obtained for P2_41k
and P2_402k in veratrole-DMF and toluene. In comparison with
colloidal hard spheres (HSs), the liquid-crystal coexistence regime
is distinctly broader, while the glass transition volume fraction (of
value 0.58 for hard spheres), as estimated by dynamic light scat-
tering and rheological experiments, is shifted to larger values, i.e.,
ϕ = 0.75, due to the deformation and possible interpenetration of
adjacent polymer shells.

In a study for similar albeit smaller soft particles, Voudouris
et al.9 argued that for RDC/L ≈ 1 core-shell particles behave as hard
spheres. In the present work, we take the ratio RDC/RH as a mea-
sure of particle softness since similar particles were dispersed in
different solvents and thus the hydrodynamic radius varies both
with the grafted polymer molecular weight and the solvent. Table I
summarizes the characteristic parameters of the different systems
1–5 (particles/solvent) presently explored, namely, the hydrody-
namic radius, RH ; surface grafting density, σ0; number of grafted
chains; particle softness parameter, RDC/RH ; and effective polymer
density at the outer blobs. Samples 1–5 are the systems studied in this
work, while for comparison we include the corresponding param-
eters for multiarm star polymers and other soft particles used in
the literature (samples 6–9 in the table with corresponding citation
numbers). Figure 2 (top) shows the molecular weight dependence of
the polymer shell thickness, h = RH − Rc, for the different particles
and solvents used. The effect of the solvent is minimal for smaller
particles (P2_41k) with shorter polymer grafted layers and becomes
more pronounced for larger particles (P2_402k), as the latter have
longer grafted chains that are not stretched in the outer shell and

TABLE I. Characteristic properties of the silica-grafted PMMA core-shell particles studied here (samples 1–5). For comparison regarding the degree of softness, the parameter
values of similar systems taken from the literature are added. Samples 6–7: silica particles grafted with a PS shell; Sample 8: silica particles grafted by a PDMS shell, and sample
9: PB star polymers having f = 128 arms.

No. Sample name RSLS (nm) RH (nm) Nchains/nm
2 (σ0) Nchains/particle (f) c∗ in (g/g)

RDC

RH
σeff outer blob (nm

−2)

1 P2_41k (Ver-DMF) 119 133 0.55 34 500 0.418 1.00 0.138
2 P2_41k (toluene) 119 123 0.55 34 500 0.532 1.08 0.154
3 P2_126k (DCB-DE) 194 205 0.65 34 500 0.202 0.62 0.065
4 P2_402k (Ver-DMF) 396 420 0.65 34 500 0.077 0.305 0.016
5 P2_402k (toluene) 382 470 0.65 34 500 0.067 0.27 0.012

6 SiP-PS short8 36 29 0.84 1 056 . . . 0.90 0.098

7 SiP-PS long8 70 67 0.50 628 . . . 0.27 0.011

8 SiP-PDMS3 180 196 0.008 3 114 . . . 0.17 0.007

9 Star 1288014 . . . ∼60 . . . 128 . . . 0.28 0.003
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thus more amenable to size variation due to solvent quality changes.
The increase in the polymer shell thickness with polymer chain Mw

is following a power law with exponent from 0.74 to 0.83 depending
on the solvent.

B. Experimental techniques

To eliminate any residual multiple scattering in concentrated
suspensions arising from incomplete refractive index matching
between particles and solvent, we have used 3D dynamic light scat-
tering (3D-DLS) to measure both static and dynamic correlation
functions. In 3D-DLS,26–28 two incident beams are used at different
scattering planes, with the corresponding scattered beams detected
at the same scattering wavevector and then cross-correlated. To

achieve this, the initial (ki1,k
i
2) and final (k

f
1,k

f
2) wavevector pairs

are rotated by some angle about the common scattering vector q
= q1 = q2 of magnitude q for the two scattering processes 1–1
and 2–2, whereas the two other scattering processes 1–2 and 2–1
detected in this experiment have different scattering vectors. These
additional scattering processes will therefore contribute to the back-
ground only, which means that the maximum intercept in the 3D-
DLS correlation function can reach ideally only 0.25 of the maxi-
mum value obtained for autocorrelation at the absence of multiple
scattering,27 as the scattered light from the first (second) beam can
fall also into the second (first) detector. Thus, the cross-correlation
intensity correlation function is

g
(2)(q, t) = ⟨I

i
1(0)Ii2(t)⟩+⟨Ii1(0)Iii2 (t)⟩

⟨I⟩2 +
⟨Iii1 (0)Ii2(t)⟩+⟨Iii1 (0)Iii2 (t)⟩

⟨I⟩2 ,

(1)

where t is the delay time between the correlated scattering inten-
sities, with subindices 1 and 2 labeling the two detectors and the
indices i and ii denoting the two different incident beams. Hence, in
the 3D cross-correlation scheme, the undesired multiple scattering
contributions are still detected by the detector [Avalanche Photon
Detectors (APDs)], but they produce different scattering vectors q1
≠ q2 and are therefore uncorrelated. In the equation above, only the

second term gives correlated contributions to g(2)(q, τ). Therefore, it
yields

g
(2)(q, t) = 3⟨I1⟩⟨I2⟩ + ⟨Ii1(0), Iii2 (t)⟩

⟨Ii1 + Iii1 ⟩⟨Ii2 + Iii2 ⟩
= 3

4
+
1

4
[1 + β

2
tot[C(q, t)]]

= 1 + β
2
tot[C(q, t)], (2)

where C(q, t) = S(q, t)/S(q) is the normalized dynamic structure fac-
tor (or intermediate scattering function) and β2tot = β2β2OVβ

2
MSβ

2
T

includes all correction factors reducing the intercept of the corre-
lation function, i.e., β2 is the coherence area factor, β2OV is the two
beam scattering volume overlap factor, β2MS is the multiple scatter-
ing factor, and β2T is the instrumental factor which for 3D-DLS is
0.25.28,29 Although ideally in the dilute regime we have β2tot = 0.25,
in our setup due to the imperfect alignment and beam overlapping,
we get a maximum value of β2tot = 0.21. Any further decrease in β2tot
is due to the multiple scattering factor, β2MS, that increases with con-
centration. Therefore, β2MS can be calculated as the ratio of the value

of the intercept of the correlation function in the concentrated sam-
ple to the corresponding dilute sample (where nomultiple scattering
is present) according to

β
2
MS = (g

(2)(q, t = 0) − 1)conc
(g(2)(q, t = 0) − 1)dil =

β2conc
β2
dil

. (3)

Here, the superscript “dil” denotes the dilute and “conc” denotes the
concentrated suspensions. The single-scattering contribution to the
intensity, Is(q), is then determined as

I
s(q) = βMSIconc(q). (4)

In determining S(q), one needs to account additionally for scat-
tering loss parameters such as the correction factor β2tot and the sam-
ple transmission. The static structure factor is calculated then from

S(q) = Is(q)cdilTdil

Idil(q)cconcTconc
, (5)

where c is the particle mass concentration, and Tconc and Tdil(=1)
are the transmissions (ratio of transmitted to incident intensity) for
the concentrated and dilute (reference) samples, respectively. Sev-
eral studies28,30,31 have demonstrated the applicability of the 3D-
DLS approach to successfully probe the dynamics in quite turbid
suspensions, for a transmission as low as 4%.

The key quantity determined in DLS as a function of scattering
wavenumber q and correlation time t is the dynamic structure factor
S(q, t) which reduces to S(q) for t = 0. For short times, S(q, t) decays
exponentially due to the short-time particle diffusion, according
to18

C(q, t ≪ τD) = S(q, t ≪ τD)
S(q) = exp[−q2D(q) t] , (6)

where τD = R2
H/D0 is a characteristic single-particle diffusion time

over the distance set by the hydrodynamic particle radius, with
D0 = kBT/(6πη0RH) denoting the single-particle Stokes-Einstein-
Sutherland diffusion coefficient. For the considered PMMA-SiP
core-shell particles, τD ∼ 18–200 ms. The short-time diffusion
function D(q) obtained in DLS characterizes the decay of ther-
mal concentration fluctuations of wavelength 2π/q. In the dilute
limit where the particles are uncorrelated, D(q) reduces to D0

where from the latter the (zero-concentration) hydrodynamic radius
RH can be inferred, for known solvent viscosity η0 at given
temperature T.

III. THEORETICAL MODELING

A. Diffusion and hydrodynamic functions

The diffusion function D(q) can be expressed in terms of the
ratio32

D(q) = D0
H(q)
S(q) , (7)

of the positive valued hydrodynamic function H(q) and S(q), times
the Stokes-Einstein-Sutherland single-particle diffusion coefficient
D0. The hydrodynamic function plays the role of a generalized
short-time sedimentation coefficient in a spatially homogeneous
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suspension, and it directly reflects the influence of the HIs. At infi-
nite dilution or in the hypothetical absence of HIs,H(q) is identically
equal to one. HIs give rise to undulations inH(q) at nonzero particle
concentrations. The principal peak value, H(qm), of H(q) is located
at the structural nearest-neighbor wavenumber qm where also the
principal peak of S(q) is observed.

For large wavenumbers q ≫ qm, H(q) becomes wavenumber-
independent and equal to the normalized short-time self-diffusion
coefficient, DS/D0, characterizing the initial slope of the particle
mean-squared displacement, while H(0) ≈ H(q ≪ qm) is equal to
the sedimentation coefficient in a homogeneous, monodisperse sus-
pension subjected to a weak and uniform (gravitational) force field.
According to Eq. (7), D(q) is determined both by the hydrodynamic
factor H(q) and the microstructural factor 1/S(q), with the latter
being independent of HIs in equilibrium. The diffusion function
attains its maximum at q = 0, withD(q = 0) = D0(H(0)/S(0)) being
distinctly larger than D0 for higher concentrations. This maximum
is due to the collective diffusive (short-time) motion of particles
allowing for a fast relaxation of long-wavelength concentration fluc-
tuations. Note that bothH(q) and S(q) attain their minimum at zero
wavenumber and that S(0) is identical to the osmotic compressibil-
ity factor which for concentrated suspensions of repelling particles
is distinctly smaller than one. The zero-q diffusion function value,
D(0), is commonly referred to as collective diffusion coefficient since
in the fluid phase it agrees practically with the macroscopic collec-
tive or gradient diffusion coefficient DC. The latter appears in the
Fick constitutive law which linearly relates the macroscopic diffu-
sion current and concentration gradient. The principal minimum
of D(q) is located at qm where S(q) and H(q) have their respective
principal maximum, with S(qm) being typically distinctly larger than
H(qm).

The slowing down of concentration fluctuation relaxations on
length scale 2π/qm is quantified by the cage diffusion coefficient
D(qm) whose value decreases with increasing concentration and
increasing strength of interparticle repulsion. For large wavenum-
bers q ≫ qm where spatial correlations over short distances are
probed, D(q) becomes equal to the short-time self-diffusion coef-
ficient DS. Due to HIs, DS is smaller than D0 both when repul-
sive and attractive direct (i.e., nonhydrodynamic) interactions are
operative.

In theory and simulations, H(q) is commonly calculated from
the equilibrium ensemble average expression32

H(q) = ⟨ 1

Nμ0

N∑
l,j=1

q̂ ⋅ μlj(X) ⋅ q̂ exp{iq ⋅ (rl − rj)}⟩ , (8)

for a system of N ≫ 1 interacting spherical particles at center
position configuration X = {r1, . . ., rN}. Here, μlj(X) is the hydro-
dynamic mobility tensor linearly relating the hydrodynamic drag
force on particle j to the resulting velocity change of particle l,
and μ0 = D0/(kBT) is the single-sphere mobility. At high dilution,
μlj(X) reduces to μ0δlj1 with unit matrix 1 and Kronecker delta
δlj, and H(q) becomes then a constant equal to one. We empha-
size that the hydrodynamic function is determined both by HIs and
direct (i.e., nonhydrodynamic) interactions. Only the latter deter-
mine the equilibrium configurational average in Eq. (8) denoted
by ⟨⋯⟩.

B. Hydrodynamic radius and spherical
annulus models

Both μlj(X) and μ0 depend on the internal hydrodynamic parti-
cle structure. In the hydrodynamic radius model (HRM), a spherical
particle of arbitrary internal structure is described hydrodynami-
cally as a no-slip sphere of reduced radius RH , for unchanged direct
interaction potential.10,33 This implies, in particular, an unchanged
(effective) excluded volume radius Reff > RH . Despite its simplicity,
as is shown in Ref. 34, the HRM is universally applicable since cor-
rection terms to the HRM based dynamic properties are quite small,
i.e., of quadratic order in the reduced slip length γ = 1 − γ, where
γ = RH/Reff . The reduced hydrodynamic radius, γ, in the HRM can
be related to particle specific properties such as the (mean) Darcy
permeability k characterizing the solvent permeability of a parti-
cle. The square root of k is identified as the hydrodynamic pene-
tration length. For uniformly permeated particles having constant

x = Reff /√k, the relation between γ and x is35

γ(x) = RH(x)
Reff

= 2x2[x − tanh(x)]
2x3 + 3[x − tanh(x)] ≈ 1 −

1

x
+O( 1

x2
) . (9)

Here, γ(x) =D0(x =∞)/D0(x) withD0(x =∞) = kBT/(6πη0Reff )
is the single-particle translational diffusion coefficient of a nonper-
meable rigid sphere having zero solvent slip at its surface. If dynamic
properties different from D(q) are considered such as the suspen-
sion viscosity, corresponding relations between γ and x should be
used which differ from the present one, however, only by small
corrections of O(1/x2).33 Regarding the here considered core-shell
particles with a permeable polymer brush of radially varying den-
sity, and a nonpermeable (or less permeable) core, x can be regarded
as an average inverse penetration length. When the shell thick-

ness is at least five times
√
k, the core is not sensed any more

hydrodynamically by the weakly penetrating solvent.36

Provided the (core-shell) particles can be described, regarding
their direct interactions, as (effective) hard spheres of volume frac-
tion ϕeff = (4π/3)nR3

eff with n denoting the number concentration
of particles, the HRM reduces to the spherical annulus model which
is fully characterized by ϕeff and γ = RH/Reff . No-slip colloidal hard
spheres are recovered in the limit γ → 1. The mathematical limit
γ = 0 describes hypothetical particles that interact directly as hard
spheres but hydrodynamically as point particles without hydrody-
namic back reflections. For the spherical annulus model, simple ana-
lytic expressions for the normalized short-time self-diffusion coeffi-
cient DS(ϕeff , γ)/D0(γ) and the sedimentation coefficient H(q = 0;
ϕeff , γ) have been presented in Ref. 10. These expressions agree well
with the high-precision hydrodynamic force multipole simulation
(HYDROMULTIPOLE) results obtained by Abade et al.36,37 for the
γ and ϕeff values considered in the simulations (ϕeff ≤ 0.45) and with
the Stokesian dynamics simulation results obtained by Banchio and
Brady17 and Banchio and Nägele20 for no-slip colloidal hard spheres
(γ = 1) in the fluid phase (ϕeff ≤ 0.5). The explicit form of these

expressions is10

DS(ϕeff , γ)
D0(γ) = 1 + λt(γ)ϕeff (1 + 0.12ϕeff − 0.70ϕ

2
eff ) (10)

and
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H(0;ϕeff , γ) = 1 + λK(γ)ϕeff [1 − 3.348(γϕeff ) + 7.426(γϕeff )2
− 10.034(γϕeff )3 + 5.882(γϕeff )4], (11)

with approximate first-order virial coefficients

λt(γ) = −1.8315 + 7.820γ − 14.231γ
2
+ 14.908γ

3

− 9.383γ
4
+ 2.717γ

5
, (12)

λK(γ) = −6.5464 + 8.592γ − 3.901γ
2
+ 2.011γ

3
− 0.142γ

4
,

(13)

whereD0(γ) =D0(1)/γ and γ = 1−γ. In the zero-annulus limit γ = 1,
the numerically precise first-order virial coefficients λt(1) = −1.8315
and λK(1) = −6.5464 of no-slip hard spheres are recovered. The
expressions for DS(ϕeff , γ)/D0(γ) and H(0; ϕeff , γ) given above are
valid for volume fractions up to the hard-sphere freezing transi-

tion value ϕ
( f )

eff
= 0.494. The self-diffusion coefficient expression

is valid generally for 0 ≤ γ ≤ 1, while the zero-wavenumber hydro-
dynamic function expression is of good accuracy in the restricted
range 0.8 < γ ≤ 1 only which still includes most experimental cases.
In the limit γ → 0, it holds exactly that H(q; ϕeff , γ = 0) = 1 and
consequently that λt(0) = 0 and λK(0) = 0.

In Refs. 10 and 37, it is shown that the ratio Hd(q; ϕeff , γ)/
Hd(0; ϕeff , γ) is, for qReff ≥ 2, practically independent of γ, for par-
ticles having hard-sphere or soft (Hertzian potential) direct interac-
tions. Here, Hd(q) = H(q) − DS/D0 is the wavenumber-dependent,
so-called direct part of the hydrodynamic function. This allows for
approximating the hydrodynamic function for γ < 1 and qReff ≥ 2

by10,37

H(q; γ) ≈
⎡⎢⎢⎢⎢⎣

DS(γ)
D0(γ)

−H(0; γ)
DS(1)
D0(1)

−H(0; 1)
⎤⎥⎥⎥⎥⎦
[H(q; 1) − DS(1)

D0(1)] +
DS(γ)
D0(γ) , (14)

i.e., in terms of the hydrodynamic function, H(q; 1) of no-slip hard
spheres where γ = 1. For H(0; γ) and DS(γ), the expressions in
Eqs. (11) and (10) are used as input, respectively. For conciseness,
in Eq. (14), the ϕeff dependence of H and DS is not displayed. Equa-
tion (14) specializes to DS(ϕeff , γ)/D0(γ) for q→∞ and to H(0; ϕeff ,
γ) for q→ 0.

While no simple analytic formula is known describing the gen-
eral q dependence of the no-slip hard-sphere H(q; ϕeff , 1), its prin-
cipal peak height value is given to excellent accuracy, and for all

ϕeff ≤ ϕ( f )eff
, by the linear form20

H(qm;ϕeff ; 1) = 1 − ϕeff /ϕcpeff = 1 − 1.35ϕeff . (15)

which after insertion into Eq. (14) results in an analytic expres-
sion for the hydrodynamic function peak height, applicable to good
accuracy for 0.8 < γ < 1 and reducing to Eq. (15) for γ = 1. Here,

ϕ
cp

eff
= π/(3√2) ≈ 0.74 is the largest possible volume fraction of

monodisperse rigid spheres, realized in closest packed (cp) fcc and
hcp crystalline structures.

An analytic expression for the cage diffusion coefficient,
D(qm; ϕeff , γ), follows from dividing H(qm; ϕeff , γ) according to

Eqs. (14) and (15), by the hard-sphere structure factor peak height
expression,38

S(qm;ϕeff ) = 1 + 0.644ϕeff
1 − ϕeff /2
(1 − ϕeff )3 , (16)

which holds accurately in the fluid phase up to the freezing transition

concentration where S(qm;ϕ( f )eff
) = 2.85 in accord with the Hansen-

Verlet freezing criterion for hard spheres.39,40 Consequently, it is

D(qm;ϕ( f )eff
, 1)/D0(1) ≈ 0.12 at freezing. With decreasing γ depart-

ing from the no-slip value one, D(qm;ϕ( f )eff
, γ)/D0(γ) increases ini-

tially monotonically, passes then through a maximum at about

γ ≈ 0.5, and decreases subsequently toward 1/S(qm;ϕ( f )eff
) = 0.35

reached for γ = 0.
The collective diffusion coefficient follows analytically from

dividingH(0; ϕeff , γ) according to Eq. (11) by the Carnahan-Starling

hard-sphere osmotic compressibility factor expression10

S(0;ϕeff ) = (1 − ϕeff )
(1 + 2ϕeff )2 + ϕ3

eff
(ϕeff − 4) , (17)

valid to high accuracy in the fluid phase up to ϕ
( f )

eff
, and in the

metastable isotropic (disordered) state even up to ϕeff = 0.57.

At the RCP volume fraction ϕ
(rcp)

eff
≈ 0.64 of genuinely

monodisperse hard spheres constituting the concentration maxi-
mum of the metastable isotropic phase, the osmotic compressibility
factor S(0) becomes zero, whereas S(qm) ≈ 4, as shown by elabo-
rate computer simulation results for S(q).41 When the hard spheres
are strictly jammed at random close packing so that they cannot
move relative to each other, one expects DS = 0 and H(qm) = 0,
and consequently a vanishing cage diffusion coefficient D(qm) = 0.
In experimental RCP suspensions, residual particle polydispersity
and softness, and the presence of a small fraction of tiny crystallites

gives rise to values of S(0) and D(qm) at ϕ
(rcp)

eff
which are not strictly

zero.42 Note further that both the high-frequency (short-time) and
zero-frequency (long-time) suspension viscosities are diverging at
random close packing.

To calculate H(q; ϕeff , γ) for qReff ≥ 2, Eq. (14) is used in
combination with the Beenakker-Mazur (BM) 2nd-order δγ mean-
field method43 by which the distinct hydrodynamic function input,
Hd(q; ϕeff , 1), of no-slip hard spheres is calculated.10 At γ = 1 and
q = qm, the so-obtained hydrodynamic function peak height follows
decently well the accurate linear form 1–1.35ϕeff up to ϕeff ≈ 0.4.
With further enlarged ϕeff , the linear form is somewhat overes-
timated but to a lesser extent than when the BM prediction for
H(qm; ϕeff , 1) is used.

While not needed for the present short-time diffusion analysis
of core-shell colloids, we note that for the spherical annulus model,
analytic expressions are available also for the long-time self-diffusion
coefficient DL(ϕeff , γ), and the high- and zero-frequency viscosities

η∞(ϕeff , γ) and η(ϕeff , γ), respectively.
10 While the overall influence

of solvent permeability is well treated within the analytical spherical
annulus model, treating core-shell particles statically (i.e., nonhy-
drodynamically) as effective hard spheres is an oversimplification for
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extended soft polymer shells. However, the simple model can still be
useful for exploring general trends in these systems, as is done in
Sec. IV.

IV. RESULTS AND DISCUSSION

A. Dilute regime: Form factor and interactions

Static light scattering intensity in the dilute regime is used
to determine the particle form factor, F(q) = Idil(q)/Idil(q = 0),
which describes intraparticle interference effects in the scatter-
ing intensity and provides information on the size, shape, and
internal structure of the scatterers. For all systems considered,
F(q) is strongly q-dependent, and it can be fitted using a core-
shell particle model with homogeneous core and in general an
inhomogeneous shell. Figure 3 shows the experimental form
factor (symbols) for different systems corresponding to parti-
cles with different shells and therefore varying softness dictated
also by the total particle size and/or the solvent quality. The
data were fitted with an adaptation from “SCATTER” software44

(ESRF).

FIG. 3. (a) Particle form factor as a function of the scattering wavenumber q. Open
symbols are experimental (SLS) data, and solid lines are fits using the core-shell
model. From the fits, the core-shell model radii values 130 nm (for P2_41k Ver-
DMF), 173 nm (for P2_41k toluene), 194 nm (for P2_126k), 396 nm (for P2_402k
Ver-DMF), and 382 nm (for P2_402k toluene) are deduced. (b) SLS experimental
data for c/Rvv (in g/cm2), for all systems 1–5. In all cases, A2 > 0 indicative of
repulsive particle interactions.

The form factor of the smaller and less soft particles P2_41k
exhibits a minimum at q = 0.016 nm−1 for both solvents, corre-
sponding to an overall effective HS radius of 280 nm. In toluene, this
minimum is less pronounced than that for the veratrole-DMF sol-
vent mixture. The core-shell model fit gives a total radius of 130 nm
in the veratrole-DMF and 173 nm in toluene. For the intermediately
sized (and softness) particles, P2_126k, F(q) exhibits a minimum
at q = 0.0185 nm−1 (red circles) corresponding to an effective HS
radius of 242 nm, while the core-shell model yields a total radius of
194 nm. The largest particle system P2_402k) yields for both solvents
(veratrole-DMF and toluene) a form factor minimum at a similar
wavenumber q = 0.012 nm−1. However, the minimum is deeper in
toluene, in contrast to what is observed for the smaller, P2_41k, par-
ticles. The total radii in the two solvents were found to be 420 nm
and 470 nm in veratrole-DMF and toluene, respectively.

In addition to the total particle size, static light scattering data
measured at different concentrations in the dilute regime allow for
an estimation of the second virial coefficient, A2, thus providing
information about interparticle interactions, with positive values of
A2 indicating repulsive interactions and negative values of A2 indi-
cating attractive interactions. The coefficient A2 (in units of mol

× ml/g2) can be determined from
Kc

Rvv
= 1

Mw
+ 2A2c, where Mw

is the molecular weight (in g/mol) of the scatterers, c is their mass
concentration (in g/ml), Rvv is the excess Rayleigh ratio (yielding

the absolute scattering intensity), and K = 4π2ν20
NAλ4

(dν
dc
)2 is a con-

stant related to the optical properties of the sample (with NA as the
Avogadro number and dν/dc as the refractive index increment of
the specific particle-solvent system45). All considered systems (par-
ticle/solvent combinations) yield positive second virial coefficients
and therefore repulsive interactions. Table II lists the parameters
used in fitting the form factor. For the smaller particles P2_41k,
RDC coincides with the total radius of the particle, i.e., the grafted
chains are fully stretched due to their excluded volumes. Thus, we
expect here a behavior close to that of hard spheres. For the two
other particle systems P2_126k and 402k, the size of the grafted
polymer shell, h = RH − Rc, is significantly larger than the core
size [as seen in Fig. 2 (top)]; hence, a behavior departing from that
of hard spheres should be expected. In addition, we used DLS to
determine the hydrodynamic radius, RH , in the dilute regime (see
Table II) based on the Stokes-Einstein-Sutherland diffusion coeffi-
cient expression. The RH values obtained are consistently but only
slightly larger than the total particle radii deduced from static light
scattering.

B. Concentrated suspensions

1. Static properties

Figure 4 depicts static scattering intensity data, normalized by
particle mass concentration c, as a function of qRH for different vol-
ume fractions, ϕ, indicated in the figure, and for the four considered
particles/solvent systems. In all cases, the intensity curves have quali-
tatively the behavior observed for colloidal suspensions in the liquid
regime, with a refining peak in the scattering intensity as the con-
centration is increased. Moreover, the peak position, qm, moves to
higher qmRH values and sharpens owing to the increasing probability
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TABLE II. Parameters used in fitting the experimental form factor by the core-shell model, and particle characteristic values
deduced from static and dynamic light scattering data, with νc as the refractive index of the core, ν0 as refractive index of the
solvent, and σc as the fitting parameter for the polydispersity of core. Note that the polydispersity index deduced here from
the form factor fits are similar but not identical with the nominal one of 0.10, deduced by TEM.

Sample P2_41k P2_41k P2_126k P2_402k P2_402k
name (Ver-DMF) (toluene) (DCB-DE) (Ver-DMF) (toluene)

Mw (kg/mol) 41 41 126 402 402
νc 1.479 1.479 1.479 1.479 1.479
ν0 1.489 1.496 1.489 1.489 1.496
Rc (nm) 65 65 65 65 65
σc 0.05 0.12 0.10 0.05 0.05
RSLS (nm) 119 119 194 396 382
RH (nm) 133 123 205 420 470

of finding particle pairs at the specific distance r ≈ 2π/qm. At low q,
the (normalized) intensity decreases with increasing volume frac-
tion, as one expects from a decreasing osmotic compressibility
suppressing large-wavelength concentration fluctuations.

With increasing particle size and hence increasing softness,
larger values of qRH are reached. For the P2_402k particles (both
suspended in toluene and veratrole-DMF), the large qRH regime
is reached where the scattered normalized intensity is nearly vol-
ume fraction independent [see Fig. 4(c)]. For the intermediately size,
P2_126k, particles, however, the normalized intensity data show an
unexpected decrease with increasing ϕ in the assessed qRH range.
For the smallest considered particle system P2_41k, the peak value
of the normalized intensity is nearly volume fraction independent,
but large qRH values are not reached in this case. This response of
the scattering intensity from the two smaller particle systems indi-
cates that a form factor changes with concentration, precluding the
proper determination of the static structure factor at high concen-
trations. In particular, the first minimum of the scattering intensity,
and thus of S(q) at qRH ∼ 5, is affected by concentration dependent
changes in the minimum of F(q) at q ∼ 5.04.

The structure factor, S(q), can be determined using Eq. (5),
assuming that the form factor does not change at higher concentra-
tions. The so-deduced structure factor for the P2_402k particles in
veratrole-DMF based on Eq. (5) is displayed in Fig. 5. The obser-
vation that S(q) at large q values approaches 1 indicates that the
assumptions underlying Eq. (5) are fulfilled in this case. By contrast,
for all the other samples, it is evident that S(q) cannot be success-
fully deduced from the scattering data in conjunction with Eq. (5)
since at the large-qRH limit we do not acquire S(q) = 1 independent
of the volume fraction. This is demonstrated in the supplementary
material. The failure to deduce a proper S(q) using Eq. (5) suggests
that the shape of the two smaller particle systems, and hence their
form factors, changes with increasing concentration, possibly due
to the grafted polymer chain interpenetration and retraction associ-
ated with changes in the solvent quality at large concentrations. The
oscillations in S(q) seen in Fig. 5 at larger qRH indicate liquidlike
order in the volume fraction range measured here. The first mini-
mum of the deduced S(q) at qRH ∼ 5 to the right of the principal
peak is affected by the low scattering intensity due to the mini-
mum of the form factor in this wavenumber region that introduces a

significant error. A similar shape of S(q) as in Fig. 5 was reported by
Laurati et al.46 for starlike micelles at high volume fractions, where
it was attributed to a partial crystallization of the sample, as verified
by additional small angle neutron scattering (SANS) experiments.
For our core-shell suspension, (partial) crystallization is ruled out as
a cause for the shape of S(q) as its minimum persists even to low
volume fractions with its width increasing as the volume fraction is
decreased. Note that crystallization is indeed observed in all systems
at higher volume fractions, with a coexistence regime as mentioned
above (Sec. II A).

The osmotic compressibility factor, 1/S(q → 0), of the consid-
ered core-shell systems strongly decreases with increasing volume
fraction. Interestingly, the principal peak height, S(qm), quantify-
ing the degree of next-neighbor ordering, shows a nonmonotonic
behavior with respect to ϕ. At the largest volume fractions close
to the liquid-crystal coexistence, the peak is located at qmRH ∼ 2.8
corresponding to significantly larger next-neighbor distance ∼2π/qm
than that in a hard-sphere suspension at liquid-crystal freezing for
which qRH ∼ 3.5 (at ϕ < 0.494). Similar longer-range interactions
were also observed in other soft colloids and spherical micelles such
as PEO-PEP starlike micelles at ϕ = 1 reported by Laurati et al.46 [see
Fig. 5(b)].

The long-range repulsion can be attributed to the presence
of dangling chain ends in the outer blobs of the polymer-grafted
particles which do not contribute significantly to the scattering
intensity. Consequently, RH and Rtot are somewhat underestimated,
while a weak longer-range repulsion for pair distances larger than
the measured values for 2RH and 2Rtot is induced. It should
be noted that no additional long-range electrostatic interactions
are expected to occur since the particles are not charged. More-
over, only weak residual van der Waals attractions are expected,
owing to the refractive index matching of the polymer shells
and the larger mutual distance of the cores of neighboring parti-
cles enforced by the steric hindrance provided by the polymeric
shells.

The volume fraction dependence of the wavenumber position,
qm, of the principal peak of S(q) should be practically equal, for
monodisperse suspensions, with the peak position of the minimum
of D(q). This wavenumber relates to the (mean) nearest-neighbor
distance ∼2π/qm dependent on the interaction range and strength,
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FIG. 4. Static light scattering intensity, Iconc(q), divided by the particle mass con-
centration, c (in gram of particles per gram of solution), as a function of qRH for all
systems studied: (a) P2_126k in DCB-DE, (b) P2_402k in veratrole-DMF (c), and
(d) P2_402k in toluene, for several volume fractions, ϕ as indicated in the caption.

and the particle concentration. Results for qmRH are presented in
Fig. 6 as a function of the volume fraction. It is insightful to com-
pare the qm for the core-shell particle systems with the correspond-
ing finding for suspensions of hard spheres and for low-salinity

FIG. 5. (a) Experimental (SLS) static structure factor, S(q), determined using
Eq. (5), as a function of qRH for P2_402k particles in veratrole-DMF, for various
volume fractions as indicated. (b) S(q) of the P2_402k system for two different
concentrations and compared with the static structure factor of starlike PEO-PEP
micelles with f = 63 arms at a similar concentration (solid line) as taken from the

work of Laurati et al.46

suspensions of charge-stabilized spherical spheres. In Fig. 6, the
qm values for colloidal hard spheres (black solid line)are cal-
culated using the Percus-Yevick (PY) approximation, while for
charged particles under low salinity conditions with long-range

FIG. 6. Wavenumber position qm of the principal peak of S(q) (open symbols) in
units of RH and as a function of volume fraction ϕ for all considered systems.
For comparison, the hard-sphere qm predicted by the Percus-Yevick (PY) scheme
for the fluid concentration regime is included (black solid curve) together with the
corresponding result qm ∝ ϕ1/3 for the peak position of charge-stabilized colloidal
spheres under low ionic strength condition (magenta solid line). Further shown
(with the corresponding filled symbols) is the wavenumber position of the minimum
of D(q) for all systems as taken from Fig. 9.
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electric repulsion the empirical formula qmRH ≈ 1.1 × (2πRH)n1/3
= 1.1 × (6ϕπ2)1/3 is used, where n is the particle number den-
sity.8 The particles P2_41k with the shortest grafted polymer chains
(open black squares) have a similar volume fraction dependence
of qm with that of hard spheres (solid black line). For the inter-
mediate sized polymer grafted particles, P2_126k (red open cir-
cles), qm follows a similar trend as that of hard spheres but with
lower values, in particular, at smaller ϕ, implying liquidlike behav-
ior for larger interparticle distances. The maximal deviation from
the corresponding hard-sphere qm is 18%, observed for the low-
est considered volume fraction. This deviation can be attributed
again to the presence of dangling ends in the outer polymer blob
region discussed earlier. Experimental data for qm of the largest con-
sidered core-shell particles P2_402k bear similarities with that for
P2_126k, with the values for qm being smaller when veratrole-DMF
is used as the solvent instead of toluene. Note that the use of an
increased effective particle radius size accounting for dangling ends
not detected in static or dynamic light scattering would not only
enlarge the depicted qmRH values but would also affect the abscissa
scale in the figure since the true volume fraction is then larger.
However, different from hard spheres, soft particles can interpen-
etrate, deform, and may eventually even shrink at large concentra-
tions.

Figure 7(a) shows the static structure factor principal peak
height, S(qm), for the considered core-shell particle systems as a
function of ϕ. The peak height (and its sharpness) is a measure of
how strongly the nearest-neighbor particle cage is developed. For
hard spheres, S(qm) increases monotonically in the fluid regime
according to Eq. (16), reaching the Hansen-Verlet hard-sphere
freezing criterion value 2.85 at the fluid-solid freezing transition

volume fraction ϕ(f ) = 0.494.39 As pointed out earlier, the determi-
nation of S(qm) in most of our samples is affected by the changes
in F(q) at large concentrations, causing uncertainties in the extrac-
tion of S(q) based on Eq. (5). Nevertheless, it is worth noting that
for the smaller and least soft particles P2_41k, the so-determined
S(qm) is nearly volume fraction independent [see Fig. 7(a)]. This
hints toward artificially introduced cancellations for increasing con-
centration caused by particle shrinkage. For the intermediately large
particles P2_126k, the peak height S(qm) increases monotonically
with increasing ϕ akin to hard spheres, reaching the Verlet-Hansen
value of 2.85 at ϕ ∼ 0.45. Note also that in this system crystal
formation is observed around ϕ ∼ 0.49–0.51.

For the larger and softer particles P2_402k in the veratrole-
DMF solvent mixture, S(qm) increases first with increasing ϕ toward
an intermediate plateau region around ϕ ∼ 0.3, rising again sub-
sequently with the Hansen-Verlet hard-sphere freezing value 2.85
reached at ϕ ∼ 0.6 where crystallization of the core-shell particles
is visually detected by Bragg scattering. As expected, due to the
softness of the particles, crystallization occurs at a higher volume
fraction than that for hard spheres (see Fig. 2), for all considered
core-shell systems since these are all quite monodisperse. Beyond
this freezing volume fraction, the value of S(qm) decreases for ϕ
values extending up to 0.64. This peak height decrease with increas-
ing volume fraction, ϕ, might be due to entering into a crystal-
liquid concentration coexistence region wheremeasurements of S(q)
are prone to larger errors since a single speckle measurement does
not provide the proper ensemble-averaged intensity from different
crystalline/liquid regions in the sample. Proper measurement of S(q)

FIG. 7. (a) Structure factor principal peak height, S(qm), as a function of volume
fraction ϕ for all considered core-shell systems as indicated. The solid black curve
is the hard-sphere peak height according to Eq. (16), and the horizontal dashed
line indicates the Hansen-Verlet peak value 2.85 hallmarking the fluid-crystal

freezing transition of hard-sphere-like systems.39 (b) Zero-q estimated values for
the osmotic compressibility factor S(0) as a function of volume fraction, for the
indicated core-shell systems. The solid black line is the hard-sphere Carnahan-
Starling result in Eq. (17). The depicted data (open symbols) are actually taken for
the lowest attained q values.

in the semicrystalline state requires additional spatial averaging of
different parts of the sample, similar to powder crystallography.18

The structure factor peak height of P2_402k in toluene exhibits
likewise a nonmonotonic volume fraction dependence.

A thermodynamic property monitored is the value of the struc-
ture factor at low q which equals to the osmotic compressibility
factor given by the ratio of the suspension osmotic compressibility
and the corresponding ideal gas compressibility for the same con-
centration and temperature. Figure 7(b) depicts the deduced low-q
structure factor values of the core-shell systems as a function of ϕ.
Interestingly, the particles with the shortest grafted polymer chains,
P2_41k and P2_126k, follow roughly the hard-sphere theoretical
prediction (solid curve) with the latter being also in good agree-
ment with the experimental zero-q extrapolated measurements for
colloidal hard spheres by Segre et al.47 The measured compressibil-
ity factor for the largest considered particles, P2_402k, is practically
the same in both solvents and distinctly exceeds the hard-sphere val-
ues. This is a clear indication of the softness of the outer polymer
layer in these systems.We point out that the compressibility factor is
estimated by the S(q) value at the lowest attained wavenumber (i.e.,
at qRH ∼ 1.5), rather than by a zero-q extrapolation which would
introduce large errors.
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2. Dynamic properties

We proceed by discussing short-time diffusion properties of
our core-shell systems for different volume fractions, measured
using the 3D-DLS setup described in Subsection II B. As noted
earlier, the dynamics is not affected by possible concentration-
dependent changes in the form factor or in the scattering con-
ditions. The experimental data are interpreted theoretically using
for simplicity the spherical annulus version of the HRM described
in Subsection III B. The virtue of the spherical annulus model in
addition to its conceptual simplicity is that accurate analytic expres-
sions are available for the diffusion (and linear viscoelastic) prop-
erties given in Subsection III B. Since the volume fraction of par-
ticles ϕ is identified using RH (from dynamic light scattering) by(4π/3)nR3

H = c/c∗, the effective hard-core radius Reff can be deter-
mined via γ = RH/Reff , fitting the experimental diffusion data byD(γ)
in a self-consistent way. The latter requires that every set of experi-
mental D(γ) data plotted vs an effective volume fraction, ϕeff = ϕ/γ3,
is represented well by D(γ) according to the spherical annulus
model.

The normalized measured dynamic structure factor, C(q, t)
= S(q, t)/S(q), quantifies correlated relaxations of thermally induced
concentrated fluctuation contributions of wavelength 2π/q, associ-
ated with self-diffusion for q≫ qm, nearest-neighbor cage relaxation
for q ≈ qm, and large-wavelength cooperative diffusion for q ≪ qm.
Figure 8(a) shows the temporal decay of the 3D-DLS C(q, t) for a
concentrated suspension at ϕ = 0.47, at various scattering wavenum-
bers as indicated (with qm = 0.0147 nm−1). As expected in the fluid
phase, the relaxation of C(q, t), toward zero at long-times, is slow-
ing down with increasing volume fraction [Fig. 8(b)]. Consistent
with Eqs. (6) and (7) describing the exponential short-time decay
(see the insets in Fig. 8), C(q, t) decays most slowly at the wavenum-
ber qm associated with the extent of the nearest-neighbor cage. This
nonmonotonic dependence of the relaxation time with q is depicted
with arrows in the inset, where the initial decay of C(q, t) is repre-
sented in a log-linear plot. It is worth noting that the shape of C(q, t)
remains for the core-shell system largely single exponential. Even as
the liquid-crystal coexistence is approached, there is no indication
of a clearly distinguishable slower long-time mode related to out-
of-cage diffusion, in contrast to hard-sphere and charge-stabilized
particle suspensions when a freezing21 or glass transition point is
approached with increasing concentration.

In the dilute regime where particles are practically uncorre-
lated, the short-time diffusion function, D(q) ≈ D0, deduced from
C(q, t) is wavenumber independent, and of value equal to the single-
particle diffusion coefficient D0 [see Eq. (7)]. By contrast, in the
concentrated regime,D(q) behaves strongly nonmonotonic, with the
most pronounced diffusional slowing down reflected by its minimal
value D(qm) at q = qm termed the (short-time) cage diffusion coeffi-
cient [see Fig. 8(b)]. As discussed earlier in relation to Eq. (7), devia-
tions of D(q)/D0 from the inverse, 1/S(q), of the structure factor are
caused by HIs and reflected in values of the hydrodynamic function
H(q) different from 1. Akin to S(q), the minimum of H(q) is located
at q = 0 and is equal to the sedimentation coefficient of a homo-
geneous monodisperse suspension in the linear response limit.32

Note that the maximal deviation of H(q) from 1 at q = 0, where
H(0) < 1, is outweighed by the even smaller minimum of S(q) at
q = 0 [compressibility factor S(0) < H(0)], resulting in the distinct

FIG. 8. (a) Normalized dynamic structure factor, C(q, t), of P2_126k in the
DCB-DE solvent mixture at different scattering wavenumbers as indicated, for
ϕ = 0.44. The principal peak of S(q) is located here at qm = 0.0147 nm−1.
Inset: The same data are shown in a log-lin plot to display more clearly the ini-
tial short-time decay according to Eq. (6). The arrows denote the nonmonotonic
response of the dynamics around the peak of the structure factor. (b) C(q, t)
as a function of correlation time t for different volume fractions as indicated,
at specific wavenumber q = 0.027 nm−1 located to the right of qm where S(q)
≈ 1 and where, approximately, the self-diffusion is probed. Inset: The same
data are shown in a log-lin plot to display better the short-time decay. The
arrow denotes the slowing down of the initial decay with increasing volume
fraction.

maximum D(0) > D0 of D(q) at q = 0, as seen in Fig. 9 and referred
to as the collective diffusion coefficient.

Figure 9 includes our experimental results for the D(q) of the
considered core-shell particle systems (filled symbols), extracted
from the initial slope of C(q, t) determined using 3D-DLS (see
Fig. 8). The q dependence of D(q) becomes more pronounced with
increasing volume fraction, reflecting the interplay of direct (ther-
modynamic) and hydrodynamic interactions described by Eq. (7).
The solid and dashed lines are spherical annulus model predictions
for D(q; γ) with γ = 1 (impermeable hard spheres) and γ = 0.95
(moderately permeable hard spheres), respectively, using Eq. (14)
for H(q; γ) applicable for qRH ≥ 2, and the hard-sphere Percus-
Yevick result48 for S(q) whose peak value S(qm) is for ϕ ≤ 0.4
close to Eq. (16). The q-dependent distinct part of the input H(q;
γ = 1) in Eq. (14) is calculated using the Beenakker-Mazur method
(BM) method,43 while the self-part input DS(γ) is obtained from
Eq. (10).
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FIG. 9. 3D-DLS data (filled symbols) for the normalized diffusion function D(q)/D0

as a function of qRH , for systems (a) P2_41k in Veratrole-DMF, (b) P2_126k in
DCB-DE, (c) P2_402k in veratrole-DMF, and (d) P2_402k in toluene at four differ-
ent volume fractions as indicated. Solid lines in (a) and (b) are spherical annulus
model predictions for D(q) based on Eq. (14), using γ = RH /Reff = 1, while dashed
lines are the spherical annulus prediction using γ = 0.95. Different colors label
different volume fractions.

For the two larger-particle systems P2_126k and P2_402k in
both solvents, the high qRH regime is practically reached experimen-
tally according to Figs. 9(b) and 9(c) since S(q) → 1 and D(q) → DS

becomes q-independent and is equal to the self-diffusion coefficient
DS. The cage diffusion coefficient,D(qm), quantifying structural cage
relaxation, and also DS decrease with increasing volume fraction as
expected from the enhanced HIs and S(qm) values. By contrast, D(q)
at small q increases with increasing ϕ, mainly triggered by the asso-
ciated decrease in S(q ≪ qm) [cf. Fig. 4 and Iconc(q) ∝ S(q)]. Note,

however, that for the larger P2_402k particle systems in Figs. 9(c)
and 9(d), the experimental small-q range is limited to qRH ≥ 1 so that
the true value for the collective diffusion coefficient DC = D(q → 0)
is not accessed. Regarding the smaller-particle system in Fig. 9(a),
the variations in D(q) are less pronounced than in the other two
larger particles while the large-q plateau regime is not clearly reached
experimentally. For comparison, Figs. 9(a), 9(b), and 9(d) include
also the spherical annulus model predictions for impermeable hard
spheres where γ = 1 (solid curves) and permeable hard spheres with
γ = 0.95 (dashed curves), corresponding in the latter case according

to Eq. (9) to a hydrodynamic permeation length
√
k of 5% of the

(effective) hard-core radius. Note that in using the spherical annulus
model we prefer to limit the theoretical curves to nonsmall values
around qm or larger, as for q ≈ 0, D(q) ∝ 1/S(q) is very sensitive to
the form of the pair potential which for soft particles differs distinctly
from the hard-sphere interactions underlying the spherical annulus
model.

According to the model calculations, the hydrodynamic effect
of solvent permeability is to enhance the reduced diffusion func-
tion D(q; γ)/D0(γ) ∝ H(q; γ) and, in particular, more strongly for
small q where the enhancement of the hydrodynamic function H(q;
γ) caused, in the case of permeable particles, by the weakened HIs is
most pronounced.

For wavenumber values near to and larger than the principal
structure factor peak position qm, the experimental D(q) in Fig. 9(a)
for the smaller particles, P2_41k, is roughly located in between the
two spherical annulus curves for impermeable and permeable hard
spheres. For smaller q values, however, the D(q)/D0 of the P2_41k
system levels off practically rather than increasing toward values
larger than one as predicted for (permeable) hard spheres. Judg-
ing from the concentration dependence of qm depicted in Fig. 6,
as expected, the P2_41k system behaves more hard-sphere-like than
the other two core-shell systems, yet the concentration dependence
of S(qm) and S(0) is, according to Fig. 7, distinctly different (weaker)
than that of hard spheres. The experimental values for S(q ≈ 0) at
ϕ > 0.4 are nearly concentration-independent and distinctly larger
than the hard-sphere S(0). This explains the small values of the
experimental D(q) in Fig. 9(a) at smaller wavenumbers. It should
be noted that a similar finding of a rather weak, in comparison with
hard spheres, minimum at qm was reported for another core-shell
particle system (silica-PDMS), likewise in the concentrated regime
studied by two-color DLS.4

For the intermediately large P2_126k particle system of
Fig. 9(b), the experimental D(q) is underestimated to some extent
by the impermeable hard-sphere prediction (blue, red, and black
solid curves), except for ϕ = 0.3 (green solid curve), albeit the overall
shape of the diffusion function is well reproduced. For q > qm, there
is better agreement of the experimental data with the D(q) curves
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for permeable hard spheres. The strongest deviations between the
experiment and (permeable) hard-sphere predictions are observed
at small q and at the minimum of D(q) at qm which grow with
increasing volume fraction. That the largest deviations of experi-
mental and spherical annulus D(q)’s are observed at small q is owed
to the strong sensitivity of S(0) to the softness and range of the direct
interaction potential.

For the largest P2_402k particles in veratrole-DMF [Fig. 9(c)],
the minimum of D(q) is measured at rather low values, i.e., at
qmRH < 3, in agreement with the position of the S(q) maximum
(see Figs. 5 and 6). As discussed above (Subsection IV B 1), this has
been seen in other soft colloids, such as starlike micelles. However, it
cannot be accounted for by any model with hard-core (solid or per-
meable) interactions. Therefore, we have not attempted to describe
quantitatively the measured D(q) of the larger and softer P2_402k
particles in veratrole-DMF [Fig. 9(c)] using the spherical annulus
model. Moreover, the analytic expressions of this simple model are
not applicable to very large volume fractions near the overlap value.
Hence, here we only show the experimental data. For P2_402k par-
ticles suspended in the veratrole-DMF mixture, a strong small-q
decline of D(q) is observed in Fig. 9(c). The locations of the local
minima andmaxima are in accord with those of the associated 1/S(q)
in Fig. 5. The cage (or structural) diffusion coefficient D(qm), in par-
ticular, is accordingly located at smaller wavenumber values (qm RH

≈ 2.80) than those for (permeable) hard spheres at the same vol-
ume fraction and than that for the smaller and less soft particles in
Figs. 9(a) and 9(b). Consistent with the findings in Figs. 5 and 6,
this is indicative of direct interactions that are longer-ranged than
those of the P2_41k and P2_126k particles. Upon changing the sol-
vent from veratrole-DMF to toluene [cf. Fig. 9(d)], the particles swell
by about 12% and become softer. The minimum of D(q) is conse-
quently located at larger qm values than those in the solvent mixture
[Fig. 9(c)]. We can therefore attempt to fit the experimental D(q)
data for these large particles in toluene up to ϕ = 0.54 with theoret-
ical predictions for solid and permeable spheres [see Fig. 9(d)] with
the same values of up to ϕeff . Note that while the D(q) minimum is
close to the one for HSs as seen in Fig. 6, it does not coincide with
the position of S(q) apparent maximum, which is evidently affected
by a particle form factor that is changing with increasing volume
fraction.

We analyze next the volume fraction dependence of the self-
diffusion coefficient,DS, extracted at the high q limit of themeasured
D(q) where we expect to have S(q)→ 1. Figure 10 shows the experi-
mentalD(qRH ≫ 1)/D0 ≈DS/D0 (solid symbols) as a function of ϕeff ,
for all considered core-shell systems. While the depicted data for the
intermediate sized, P2_126k, and large, P2_402k, particles in both
solvents are determined from the large-qRH regime of DLS mea-
surements, those for the smaller particles, P2_41k, are taken for the
largest attained q values where however the genuine large-q limit of
D(q) is not reached. As mentioned above, this plot was created after
determining in a self-consistent way (in practice after one iteration)
the value of γ and therefore the related ϕeff = ϕ/γ3. Our experimen-
tal data are compared with the spherical annulus model predictions
for the DS(ϕ; γ)/D0(γ) of solvent-permeable colloidal hard spheres
according to Eq. (10), for fitting values of γ as indicated in the fig-
ure. We reemphasize that Eq. (10) describes well the high-precision
hydrodynamic force multipole simulation (HYDROMULTIPOLE)
data by Abade et al.37,49–51 for (uniformly) permeable and spherical

FIG. 10. Experimental estimates (solid filled symbols) of the normalized short-time
self-diffusion coefficient, DS/D0 ≈ D(q≫ 1/RH)/D0 as a function of effective volume
fraction, for the considered core-shell systems as indicated. Solid lines are fits to
the experimental data using the accurate spherical annulus model expression for
DS/D0 given in Eq. (10), with fit values for γ = RH /Reff listed in the figure legend.
For γ = 1, the annulus model describes no-slip colloidal hard spheres.

annulus particles, as shown, e.g., in a comprehensive study by Riest
and Nägele.10

Except for the data for the P2_41k particles (solid black
squares) which follow the theoretical prediction for the short-time
self-diffusion coefficient of impermeable hard spheres (black solid
curve) rather closely even for large concentrations, for all the other
core-shell systems the slowing down of DS cannot be described
quantitatively by the single-parameter spherical annulus model.
The experimental DS of the intermediately large particles P2_126k
decreases in general slower than the smaller P2_41k particles and
the impermeable hard sphere prediction (γ = 1). Its volume frac-
tion dependence can follow rather well the permeable hard-sphere
model using γ = 0.95, when the experimental data are plotted self-
consistently as a function of the corresponding ϕeff . This suggests,
according to Eq. (9), a mean hydrodynamic penetration depth of√
k ≈ (1 − γ)RH/γ = 10.79 nm.

For the larger and softer core-shell particles P2_402k, experi-
mental data ofDS are also compared with the theoretical predictions
of the spherical annulus model in both solvents. The decay of DS

for the P2_402k particles in veratrole-DMF is more faster than in
toluene when plotted as a function of concentration (or ϕ = c/c∗),
indicative of the softer character discussed above. Moreover, the
decay of DS in the P2_402k in veratrole-DMF seems more com-
plex than in toluene, although there are less experimental points
in the latter. When compared with the spherical annulus model
predictions with γ = 0.90, we notice that experimental data (again
plotted self-consistently vs the corresponding ϕeff ) decrease stronger
at small ϕeff , while roughly around ϕeff = 0.2 they start to follow
the permeable sphere model curve. For this system, γ = 0.90 cor-

responds to a mean hydrodynamic penetration depth
√
k = 46.67

nm, clearly larger than what was found for the smaller particles,
P2_126k.

The decay ofDS with increasing concentration is weaker for the
large particle system in toluene. However, here, DS cannot be fitted
successfully if plotted in a self-consistent way vs ϕeff , by the spherical
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annulus model using any value γ. Here, experimental data are
plotted vs ϕeff corresponding to γ = 0.85. For comparison, we
show the model predictions both for γ = 0.85 (correspond-

ing to a
√
k = 117.5 nm) and γ = 0.80 (corresponding to a√

k = 82.9 nm). It is obvious that the experimental data for
the larger and softer particles cannot be appropriately described
by the spherical annulus model with γ = 0.85, as the latter pre-
dicts a much stronger decrease in DS with the corresponding ϕeff .
Moreover, even the model predictions with γ = 0.8 are slightly
below the experimental data, which are however plotted as a func-
tion of the ϕeff of γ = 0.85; hence, if the proper ϕeff would have
been used the experimental data would have been shifted even
further to the right and thus not agree with the model. We can
thus conclude that, as expected, the model reached its limita-
tions and a more comprehensive theoretical approach would be
needed, probably taking into account both softness and permeability
effects.

While the precise origin for the more complex volume frac-
tion dependence of DS in veratrole-DMF is not fully understood,
we may speculate that it is due to solvent-specific interactions that
change with increasing concentration in the mixed solvent, as such
a response is not observable in toluene. The latter is clearly a good
solvent for the PMMA polymer grafted chains and actually a better
one than the veratrole-DMF mixture, as suggested by the shell size,
h, molecular weight dependence (Fig. 2, top) and the A2 measure-
ments [Fig. 3(b)]. The grafted polymer chains may thus undergo a
conformation change above a certain concentration (still below c∗)
caused by a preferential distribution of solvents within and around
the particle or a change of solvent quality. An accompanied shrink-
age of the polymer shell may therefore lead to the observed softening
of the decrease in DS within ϕeff = 0.1–0.3. A similar but less pro-
nounced might be expected for the P2_126k particles in the mixed
solvent; however, the effect is not clear probably because the size of
the polymer grafted layer is shorter and denser (as the grafting den-
sity is the same) and hence should not be affected as much (if at
all) by any preferential solvent distribution. A similar plateau region
in the volume fraction dependence of the self-diffusion coefficient
was found also in block copolymer colloidal micelles with a cross-
linked core5 and was attributed, inspired by computer simulation
predictions, to a solvent-mediated core shrinkage with increasing
concentration.

We may now compare the hydrodynamic penetration depth,√
k, which is a quantitative measure of the solvent permeable part

of the particle for the different systems and solvents. While for the
smaller particles, P2_41k, DS essentially follows the nonpermeable

hard sphere predictions (therefore
√
k = 0), for the intermedi-

ate particle, P2_126k, we get
√
k = 10.79 nm, and for P2_402k

in veratrole-DMF, we similarly get
√
k = 46.67 nm. By contrast,

the softer system, P2_402k in toluene, as discussed above (see also
Fig. 10) cannot be fitted by the spherical annulus model.

In concluding our discussion of self-diffusion, we point out
that while being quite small, DS does not vanish at the glass
transition volume fraction, which for monodisperse hard spheres
occurs at ϕ ≈ 0.58. By contrast, the long-time (out-of-cage) self-
diffusion coefficient DL quantifying the long-time slope of the par-
ticle mean-squared displacement vanishes (practically) at the glass
transition concentration, as the suspension viscosity diverges here.

According to Fig. 10, most DS data points of the core-shell sys-
tems are located above the impermeable hard-sphere curve (solid
black line). Since the hydrodynamic volume fraction is related with
c/c∗, for sufficiently soft, deformable, or interpenetrable particles,
a singular behavior of such dynamic quantities at a glass transi-
tion can take place for volume fractions larger than one, i.e., for
c > c∗. This is indeed the case for a variety of soft colloid sys-
tems, polymeric microgels, multiarm starlike polymers, and micellar
solutions.6,9,15

Softness and solvent permeability effects are also manifested in
the (short-time) cage diffusion coefficientD(qm; γ) =D0(γ)H(qm; γ)/
S(qm) constituting the minimum of D(q) and related to cooperative
diffusion across a nearest neighbor pair distance ∼2π/qm. Experi-
mental results for the reduced diffusion D(qm)/D0 of the current
core-shell systems are shown in Fig. 11(a) in conjunction with the
associated spherical annulus model fits of this quantity. Experimen-
tal data are again plotted as a function of ϕeff in order to be self-
consistently compared with theoretical predictions as well as with
Ds. Similarly with the latter, the cage diffusion coefficient slows

FIG. 11. (a) Normalized experimental cage diffusion coefficient D(qm)/D0

= H(qm)/S(qm) (solid filled symbols) of all core-shell particles as a function of
effective volume fraction, ϕeff , using the same γ values for each system as those
for Ds in Fig. 10. Solid lines are spherical annulus model predictions based on
Eqs. (14) and (15) for H(qm; γ) and Eq. (16) for the (effective) hard-sphere peak
height S(qm), with different γ values as shown in the legend. (b) Cage diffusion
coefficient plotted vs the reduced volume per particle V /V0 = π/6ϕ following Segre

et al.47 The arrows denote the estimate of the RCP volume fraction ϕRCP where
D(qm) = 0, for all samples. With increasing particle softness, RCP increases from
0.64 for system P2_41k to the distinctly larger value of 1.19 for the P2_402k
particles in toluene.
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down with increasing volume fraction [Fig. 11(a)] with its decrease
being stronger for the small and intermediate sized particles P2_42k
and P2_126k and weaker for the large P2_402k particles suspended
in veratrole-DMF and in even more in toluene. The volume-fraction
dependence of the experimental D(qm) data is contrasted with the
spherical annulus model predictions, based on Eqs. (14)–(16) (solid
curves) with the same γ values as those used to describe DS in
Fig. 10.

Although for the two smaller particles P2_42k and P2_126k
experimental data for the cage (structural) diffusion approach the
theoretical predictions used in Fig. 10 to describe the self-diffusion,
for the larger and softer particles the experimental cage diffusion
decreases much slower than the annulus model predictions used to
fit the self-diffusion (for comparison, γ = 0.8 and γ = 0.6 are shown).
Note, however, that as discussed in Subsection III B, the employed
spherical annulus model expression for D(qm) is less accurate than
the one in Eq. (10) forDS since the former tends to overestimate cage
diffusion for γ ≲ 0.8.

We point out that the D(qm) data for P2_402k in veratrole-
DMF reveal a change of slope around ϕeff ≈ 0.45 [see vertical
arrow in Fig. 11(a)], related to an associated change of slope in
the self-diffusion coefficient as a function of ϕeff noted in Fig. 10
and a plateaulike region of S(qm) around the same volume fraction.
Although, as discussed above, the form factor may change in this
regime the fact that a similar behavior is also seen in D(q)s suggests
that there is a real qualitative effect in this concentration regime.
This behavior may originate from a retraction of the outer part of
polymer grafted chains with increasing concentration and therefore
an overall shrinkage of the particle which leads to a lower actual vol-
ume fraction. If there is arm retraction and overall particle shrinkage
by increasing the volume fraction (as has been suggested in similar
systems), then ϕeff does not take into account such a change; hence,
the value of ϕeff is apparently overestimated.

In Fig. 11(b), we replot D(qm) as a function of the reduced

free volume per particle, V/V0 = π/(6ϕ), where V0 = (2RH)3.
Following Segre et al.52 who performed such an analysis for col-
loidal hard spheres, this plot provides a means to estimate an appar-
ent RCP volume fraction ϕRCP by an extrapolation to the free vol-
ume value where D(qm) becomes zero, indicating complete sup-
pression of diffusional motion on the length scale set by qm. Note
that here we use the experimental, ϕ = c/c∗, related with the mea-
sured hydrodynamic radius, RH , in order to avoid any model depen-
dent uncertainties for the estimation of the apparent RCP where
D(qm) vanishes. Our experimental data at high volume fractions
have a linear dependence on V/V0 for associated small values of
the latter. The RCP volume fraction estimates deduced from a
linear extrapolation to D(qm) = 0 are ϕRCP ≈ 0.67 for the small
(and least soft) particles P2_41k in veratrole-DMF, ϕRCP ≈ 0.70 for
the intermediately large and soft particles P2_126k in DCB-DE,
while for the larger, softer, and more permeable particles distinctly
larger volume fraction values ϕRCP ≈ 0.91 for P2_402k in veratrole-
DMF and ϕRCP ≈ 1.19 for P2_402k in toluene are obtained. Note
that volume fraction values larger than one for the random close
packing are attainable since particles are soft, interpenetrable, and
compressible.

We finally discuss the short-time collective diffusion coeffi-
cientD(q→ 0) quantifying diffusional relaxation of long-wavelength
concentration fluctuations by cooperative particle motion. For the

FIG. 12. Experimental estimates for the normalized collective diffusion coefficient
Dc /D0 = H(0)/S(0) (open red circles) and normalized short-time self-diffusion coef-
ficient DS/D0 (open blue squares) of the core-shell system P2_126k in DCB-DE
as functions of ϕeff , extracted from the low-q and high-q data of D(q), respectively.
Red stars are experimental hard-sphere data for the collective diffusion coefficient

Dc measured by Segre et al.52 The red up-turning curves are the spherical annu-
lus model results for the collective diffusion coefficient using Eq. (11) for H(0; γ)
and Eq. (17) for S(0), while the blue down-turning curves are the spherical annulus
model prediction for DS(γ)/D0 by Eq. (10). Depicted are the model curves for γ = 1
(solid) corresponding to no-slip (impermeable) hard spheres and γ = 0.95 (dashed)
corresponding to solvent-permeable spheres with penetration length equal to five
percent of the excluded volume radius.

larger particles (P2_402k) in both solvents,D(q→ 0) cannot be safely
extracted as our experimental wavenumber window is restricted to
values qRH ≫ 1, while for the smaller, P2_41k, and intermediate,
P2_126k, particles we used the D(q) values measured at the lowest
assessed q as a good estimate (i.e., lower bound) of the collective
diffusion coefficient.

In Fig. 12, we plot the collective short-time diffusion coeffi-
cient estimate, D(q ≪ qm), together with self-diffusion coefficient
data as a function of ϕeff , for the intermediate-sized particle system
P2_126k in DCB-DE, for which both quantities can be safely deter-
mined. For comparison, we also show experimental data52 for the
collective diffusion of impermeable colloidal hard spheres (sterically
stabilized PMMA particles), as well as the spherical annulus predic-
tions for bothDc =D(q = 0) andDS using γ = 1 and 0.95, respectively.
Note that the collective diffusion coefficient, Dc, increases with vol-
ume fraction, indicative of a suspension with predominantly repul-
sive interactions of shorter range, while DS decreases which would
be the case even for attractive interactions. While there is a sig-
nificant scatter in the depicted Dc = D(q = 0) data, owing to large
errors in estimating the zero-q limit, qualitatively the collective dif-
fusion data follow the impermeable hard-sphere behavior, whereas
the experimental self-diffusion follows the spherical annulus curve
for permeable particles.

V. CONCLUSIONS

The structure and short-time dynamics in concentrated sus-
pensions of soft and semipermeable core-shell particles were mea-
sured in a wide range of volume fractions through 3D dynamic light
scattering experiments. Various systems with different molecular
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weights of polymer grafted chains and different solvents were uti-
lized to investigate the effects of softness and solvent permeability in
the dynamics around the peak of the structure factor. The equilib-
rium microstructural properties show deviations from hard sphere
behavior, indicating a soft character of the particles, and provide
strong indications of a variation of the outer shell and shrinkage
of the overall particle size with increasing concentration, a phe-
nomenon that is solvent dependent and stronger for the larger and
softer particle system (P2_402k). More specifically, while for the
smaller particles the position qm of the main structure factor peak
follows the HS behavior, for the other two, larger, core-shell par-
ticles, longer-range repulsive interactions, not accounted for in the
hydrodynamic radius, RH (measured by DLS), are manifested by a
shift of qm to smaller values than what is expected in the case of
hard spheres.

While it is difficult to extract the equilibrium static structure
factor, S(q), by 3D-SLS due to unaccountable concentration changes
in the particle form factor, dynamic properties are accurately deter-
mined by 3D-DLS with the diffusion function,D(q), deduced unam-
biguously from the correlation functions (or dynamic structure fac-
tor), C(q, t). The latter exhibits, to a large extent, a single exponen-
tial relaxation decay for all samples and volume fractions measured.
Therefore, the initial slope ofC(q, t) provides an accurate determina-
tion of the relaxation time, from which the diffusion function, D(q),
was extracted at different q.

The D(q) was measured as a function of (hydrodynamic) vol-
ume fraction, ϕ = c/c∗, for all particle/solvent systems, exhibiting a
slowing down around the peak position of S(q), as expected accord-
ing to Eq. (7). The short-time diffusion coefficient,D(q), was probed,
in particular, at low wavenumbers [below the peak position of S(q)],
yielding the collective diffusion coefficient, at the peak of S(q) (at q
= qm) where cage (or structural) diffusion is monitored and in the
high-q limit where self-diffusion is measured.

Experimental findings were also compared extensively with
analytic theoretical results for D(q) in the simple spherical annu-
lus model, describing, in conjunction with Eq. (9) and ϕeff = ϕ/γ3,
solvent-permeable and impermeable colloidal hard spheres. As a
first step, we directly confronted the shape of the experimental D(q)
withmodel predictions at high volume fractions in the liquid regime.
Stronger quantitative discrepancies were revealed for the smaller
(harder) particles at low q, where D(q) is almost q independent, as
well as for the larger particles in the mixed solvent (veratrole-DMF)
where the minimum D(qm) is detected at far smaller q values than
expected for permeable or impermeable HSs. In a more detailed
comparison of experiments and theory, the spherical annulus model
is found to describe overall well the concentration dependence of the
(short-time) self-diffusion coefficientDS, deduced experimentally as
the high-q form of the experimental D(q) for the two soft and per-
meable core-shell systems, i.e., P2_126k in DCB-DE and P2_402k in
veratrole-DMF, utilizing as the only fitting parameter γ = RH/Reff ,
corresponding to an effective hard sphere radius Reff or equivalently
to a Darcy hydrodynamic penetration depth. More specifically, the
self-diffusion coefficient for these two systems can be described
well using γ = 0.95 and 0.9, respectively. On the other hand, for
the particles with the shorter grafted chains (thus harder and less
permeable), DS follows well the nonpermeable hard-sphere predic-
tion (with γ = 1), whereas the softer system, consisting of the large
particles P2_402k in toluene, cannot be fitted with the spherical

annulus model predictions, providing evidence of the limits of the
model.

We have further determined experimentally the structural (or
cage) diffusion coefficient, D(qm), as the minimum of D(q), and an
estimate, when possible at the low q limit, of the collective diffu-
sion coefficient, DC. A direct comparison with the spherical annulus
model suggests that the experimental D(qm) data deviate stronger
from the model predictions than the corresponding self-diffusion
coefficient DS; therefore, it can be considered a more sensitive probe
of softness and permeability effects and consequently a more chal-
lenging dynamic quantity to be fitted by a comprehensive theory.
For the collective diffusion coefficient, DC, we note that the experi-
mental estimate for the intermediate particle size system is in quali-
tative agreement with model predictions using the fitting parameter,
γ = 0.95, that was found to describe well the volume fraction depen-
dence ofDS. However, as mentioned above, theDC for the small and
hard particles clearly deviates from the model predictions (both the
permeable and impermeable models), while for the large (and softer)
particle systems the low-q limit of D(q) is not adequately reached to
allow for a reasonable estimation of DC.

While the spherical annulus model appeals by its simplicity and
the well-tested good accuracy of the analytic expression for D(q)
listed in Eqs. (10)–(17), all details of the soft interaction poten-
tial of core-shell particles are here lumped together into a single
effective hard-core radius Reff with associated effective volume frac-
tion ϕeff . These details affect D(q) = D0H(q)/S(q) not only explicitly
via the inverse static factor 1/S(q), and here, in particular, at small
q owing to an enlarged osmotic compressibility, but also implic-
itly by affecting the hydrodynamical factor H(q) in Eq. (8) via the
equilibrium configurational average. In using the spherical annulus
model for the interpretation of experimental D(q) data, one there-
fore attributes deviations from an effective hard-sphere behavior
(once ϕeff has been defined) to solvent permeability, with a con-
sequential system-dependent likelihood to overestimate the hydro-
dynamic particle permeability and its influence in comparison with
particle softness and flexibility. Using instead of the spherical annu-
lus model a refined theoretical analysis based on a more complex
realistic pair potential will further require, for internal consistency,
a detailed modeling of the hydrodynamic particle structure which
strongly complicates the calculation of D(q) for concentrated sus-
pensions. Such an analysis requiring elaborate hydrodynamic simu-
lations can be the subject of future work. In this context, we note that
recent calculations ofD(q)/D0 for soft Hertz potential particles mim-
icking homogeneous, nonionic spherical microgel particles show a
distinct small −q downshift of D(q)/D0 with increasing softness,
while the oscillations at larger q are damped and D(q)/D0 is slightly
upshifted.53 The softness effects on D(q) described here are consis-
tent with the experimental deviations of D(q)/D0 in Fig. 9(b) from
the spherical annulus model predictions where (dynamic) softness
effects are disregarded.

Finally, from a zero-value extrapolation of the measured cage
diffusion coefficient D(qm) as a function of the reduced free volume
per particle (proportionally to 1/ϕ), we have estimated the random
close packing (RCP) volume fraction for all considered core-shell
systems. The deduced RCP volume fraction shows the expected
increase with increasing particle softness, acquiring values close to
that of hard spheres for the smaller and harder particle system (ϕRCP
≈ 0.64 for P2_41k) and clearly larger values than HS close-packing
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for the softer particle systems (P2_126k and P2_402k) since outer
shell shrinkage, polymer chain interpenetration, and deformation
are possible.

SUPPLEMENTARY MATERIAL

See supplementary material for the experimental structure fac-
tors S(q) and the experimental estimates for the normalized diffu-
sion coefficients (D_c or D_m or D_s) of the core-shell systems not
shown in the main text.
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