001     867755
005     20240619083557.0
024 7 _ |a 10.1063/1.5129575
|2 doi
024 7 _ |a 0021-9606
|2 ISSN
024 7 _ |a 1089-7690
|2 ISSN
024 7 _ |a 1520-9032
|2 ISSN
024 7 _ |a 2128/23705
|2 Handle
024 7 _ |a altmetric:72793931
|2 altmetric
024 7 _ |a pmid:31837680
|2 pmid
024 7 _ |a WOS:000505596000034
|2 WOS
037 _ _ |a FZJ-2019-06370
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Brito, Mariano E.
|0 P:(DE-Juel1)168542
|b 0
245 _ _ |a Modeling deswelling, thermodynamics, structure, and dynamics in ionic microgel suspensions
260 _ _ |a Melville, NY
|c 2019
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1576738687_5126
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ionic microgel particles in a good solvent swell to an equilibrium size determined by a balance of electrostatic and elastic forces. Whencrowded, ionic microgels deswell owing to a redistribution of microions inside and outside the particles. The concentration-dependentdeswelling affects the interactions between the microgels, and, consequently, the suspension properties. We present a comprehensive theoreticalstudy of crowding effects on thermodynamic, structural, and dynamic properties of weakly cross-linked ionic microgels in a good solvent.The microgels are modeled as microion- and solvent-permeable colloidal spheres with fixed charge uniformly distributed over the polymergel backbone, whose elastic and solvent-interaction free energies are described using the Flory-Rehner theory. Two mean-field methods forcalculating the crowding-dependent microgel radius are investigated and combined with calculations of the net microgel charge characterizingthe electrostatic part of an effective microgel pair potential, with charge renormalization accounted for. Using this effective pair potential,thermodynamic and static suspension properties are calculated including the osmotic pressure and microgel pair distribution function. Thelatter is used in our calculations of dynamic suspension properties, where we account for hydrodynamic interactions. Results for diffusionand rheological properties are presented over ranges of microgel concentration and charge. We show that deswelling mildly enhances selfdiffusionand collective diffusion and the osmotic pressure, lowers the suspension viscosity, and significantly shifts the suspension crystallizationpoint to higher concentrations. This paper presents a bottom-up approach to efficiently computing suspension properties of crowdedionic microgels using single-particle characteristics.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Denton, Alan R.
|0 0000-0002-8710-6662
|b 1
700 1 _ |a Nägele, Gerhard
|0 P:(DE-Juel1)130858
|b 2
|e Corresponding author
773 _ _ |a 10.1063/1.5129575
|g Vol. 151, no. 22, p. 224901 -
|0 PERI:(DE-600)1473050-9
|n 22
|p 224901 -
|t The journal of chemical physics
|v 151
|y 2019
|x 1089-7690
856 4 _ |y Published on 2019-12-09. Available in OpenAccess from 2020-12-09.
|u https://juser.fz-juelich.de/record/867755/files/1.5129575-1.pdf
856 4 _ |y Published on 2019-12-09. Available in OpenAccess from 2020-12-09.
|x pdfa
|u https://juser.fz-juelich.de/record/867755/files/1.5129575-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:867755
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130858
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEM PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21