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ABSTRACT

Ionic microgel particles in a good solvent swell to an equilibrium size determined by a balance of electrostatic and elastic forces. When
crowded, ionic microgels deswell owing to a redistribution of microions inside and outside the particles. The concentration-dependent
deswelling affects the interactions between the microgels and, consequently, the suspension properties. We present a comprehensive theoreti-
cal study of crowding effects on thermodynamic, structural, and dynamic properties of weakly cross-linked ionic microgels in a good solvent.
The microgels are modeled as microion- and solvent-permeable colloidal spheres with fixed charge uniformly distributed over the polymer
gel backbone, whose elastic and solvent-interaction free energies are described using the Flory-Rehner theory. Two mean-field methods for
calculating the crowding-dependent microgel radius are investigated and combined with calculations of the net microgel charge characteriz-
ing the electrostatic part of an effective microgel pair potential, with charge renormalization accounted for. Using this effective pair potential,
thermodynamic and static suspension properties are calculated, including the osmotic pressure and microgel pair distribution function. The
latter is used in our calculations of dynamic suspension properties, where we account for hydrodynamic interactions. Results for diffusion
and rheological properties are presented over ranges of microgel concentration and charge. We show that deswelling mildly enhances self-
diffusion and collective diffusion and the osmotic pressure, lowers the suspension viscosity, and significantly shifts the suspension crystalliza-
tion point to higher concentrations. This paper presents a bottom-up approach to efficiently computing suspension properties of crowded
ionic microgels using single-particle characteristics.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5129575., s

I. INTRODUCTION

Mesoscopically sized microgel particles are of both fundamen-
tal and technological interest owing to their strong sensitivity to
external parameters, including temperature (solvent quality), pH,
ionic strength, and concentration, which control their equilibrium
size and soft interactions.1,2 Because of their profound environmen-
tal adaptability and capacity to partially interpenetrate and host
small molecular species, microgels have a multitude of possible
applications, e.g., as drug-delivery vehicles, functionalized colloids,
switchable membrane filters, and tunable microreactors.3

An important subgroup is formed by ionic microgels, which
are typically globular particles consisting of cross-linked polyelec-
trolyte chains. When dispersed in a polar solvent under good sol-
vent conditions, an ionic microgel particle becomes charged due
to the dissociation of counterions from ionizable groups on the

polymer backbone. For weak cross-linking, the soft particle swells
to an equilibrium size that can be substantially larger than that
in the dry state. It has been shown experimentally4–6 and the-
oretically5–11 that the particles deswell with increasing concen-
tration, which is most pronounced for low background ionic
strength and smaller concentrations well below the threshold where
the microgels start to overlap. This behavior distinguishes ionic
microgels from nonionic ones since, for the latter, deswelling
(or interpenetration and facetting) is observed only at very high
concentrations.12,13

In theory-simulation studies by Denton and Tang9 and Weyer
and Denton,10 where the interplay of elastic and electrostatic influ-
ences is accounted for using a coarse-grained model, microgel
deswelling with increasing concentration is explained by a redis-
tribution of counterions. These ions increasingly permeate the
microgel to maintain balance of the electroelastic pressure inside
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and outside the particles. The shrinkage of microgels with increas-
ing concentration is thus accompanied by a decreasing net microgel
charge and narrowing of the particle size distribution around the
equilibriummean radius. At low background ionic strength (i.e., low
salt content), the mean counterion concentration outside a micro-
gel is much smaller than that inside, with an accordingly strong
sensitivity of the mean microgel size to concentration changes.
With increasing salt content, the strong inside-outside counterion
concentration gradient and the concomitant ion pressure gradient
are flattened out, reducing the sensitivity of the microgel size to
concentration variations.

Owing to the counterion-induced deswelling, sufficiently soft
ionic microgels can penetrate apertures considerably narrower than
their dilute-concentration size, at concentrations below particle
overlap.14 This ability has potentially important applications for
drug delivery, microfluidics, and filtration. For example, in pressure-
driven membrane filtration used to concentrate and purify micro-
gels, deswelling can lead to an unwarranted enhanced clogging of
membrane pores. On the other hand, deswelling reduces the for-
mation of a fluid concentration-polarization layer and a solid fil-
ter cake layer of particles accumulated on the membrane surface,
which cause additional (effective) hydraulic resistance. The forma-
tion of these inhomogeneous layers is determined by concentration-
dependent transport properties of crowded microgel suspensions in
conjunction with osmotic pressure effects, namely, by the collective
diffusion coefficient and the suspension viscosity.15–17

The filtration example illustrates the demand for studying dif-
fusion and rheological transport properties of soft ionic micro-
gel suspensions, in general, and the effects of counterion-regulated
deswelling, in particular. In this paper, we present a comprehen-
sive theoretical exploration of dynamic and equilibriummicrostruc-
tural properties of fluid-phase suspensions of ionic microgels in
the swollen state. Being of interest in their own right, microstruc-
tural properties such as the radial distribution function (RDF) and
static structure factor are also required as input in the calculation
of dynamic suspension properties, including generalized sedimen-
tation and collective diffusion coefficients and the high-frequency
and zero-frequency viscosities. Following earlier work by Denton
et al.,9,10,18,19 we model the ionic microgels in a coarse-grained way
as microion- and solvent-permeable monodisperse elastic colloidal
spheres, with the charged sites of the cross-linked polymer gel back-
bone described by a uniform charge distribution. This description
is reasonable, under the proviso that the cross-linker density does
not vary strongly along the particle radius. We describe the elas-
tic and solvent-interaction free energy contributions of a microgel
using the Flory-Rehner theory20–22 for uniform cross-linker distri-
bution. For calculating the electrostatic semigrand free energy con-
tribution of microgels in a concentrated suspension, in Donnan
equilibrium with a 1:1 strong electrolyte reservoir, we use two differ-
ent mean-field methods, namely, the spherical Poisson-Boltzmann
cell model (PBCM) approach of Denton and Tang9 and a first-
order thermodynamic perturbation theory (TPT) method of Weyer
and Denton,10 based on a multicenter linear-response approach.
The equilibrium microgel radius is obtained from minimizing the
total suspension free energy, equivalent to enforcing the balance of
total pressure inside and outside a particle. In combination with
an effective electrostatic pair potential expression for ionic micro-
gels derived from the multicenter approach,18,23,24 we determine

the pressure and osmotic compressibility of microgel suspensions
as well as the microgel pair distribution function and static struc-
ture factor using the hypernetted chain (HNC) and thermodynam-
ically self-consistent Rogers-Young (RY) integral-equation meth-
ods.25 For nonoverlapping particles, the effective pair potential is of
a screened-Coulomb form, akin to the potential for ion impermeable
charge-stabilized colloidal particles, but with a coupling strength
that decreases with increasing concentration and ionic strength of
the suspension. The net microgel charge likewise decreases with
increasing concentration. For overlapping microgels, the effective
electrostatic potential remains finite and is augmented in our model
by a soft Hertz potential accounting for elastic repulsion at mod-
est overlap.26,27 Any van der Waals attraction between the weakly
cross-linked microgels can be neglected due to their high solvent
content.

The microgel pair distribution function is used as input to our
calculations of dynamic suspension properties. Semi-analytic meth-
ods are used to calculate dynamic properties, whose good perfor-
mance has been established, by comparison with elaborate dynamic
computer simulations, for a variety of colloidal model systems
describing globular proteins, impermeable charge-stabilized col-
loids, and nonionic spherical microgels. These methods account for
the salient hydrodynamic particle interactionsmediated by interven-
ing solvent flow. In our assessment of deswelling effects, the results
obtained for various static and dynamic suspension properties are
compared with the ones for a (fictitious) reference suspension of
constant-sized microgels.

The paper is structured as follows: In Sec. II, we review the
derivation of the effective one-component model (OCM) of ionic
microgels by integrating out themicroion and particle-internal poly-
mer degrees of freedom, resulting in a state-dependent effective pair
potential and volume pressure contribution. Section III gives the
essentials of the linear TPT and nonlinear PBCM methods used for
calculating the equilibrium microgel radius as a function of concen-
tration, backbone charge, and reservoir ionic strength and further
describes how the netmicrogel charge and the electrostatic screening
constant characterizing the pair potential are obtained. The meth-
ods used for calculating structural and thermodynamic properties
are discussed in Sec. IV. The diffusion and rheological properties
explored in this work are summarized in Sec. V, together with the
analytic methods for their calculation within the one-component
model framework. In Sec. VI, results are presented for static proper-
ties, including the microgel swelling ratio, pair distribution function,
and osmotic pressure, as well as for dynamic properties, includ-
ing the hydrodynamic function, collective diffusion coefficient, and
low- and high-frequency suspension viscosities. Finally, Sec. VII
summarizes our conclusions.

II. EFFECTIVE ONE-COMPONENT MODEL

We describe here the employed microgel model and the
essential steps of tracing out the microion and polymer-backbone
monomeric degrees of freedom, leading to an effective one-
component suspension description of pseudo-microgels interacting
via a state-dependent effective pair potential.9,10,12 This potential
determines the equilibrium microstructure of the microgels and, in
conjunction with a structure-independent volume grand free energy
contribution, also the (osmotic) thermodynamic properties of the
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whole suspension, including its phase behavior. For conciseness, we
use the compact notation of Ref. 10, to which we refer the reader for
further details, focusing here on the physical aspects.

The distributions of backbone polyelectrolyte monomers,
cross-linkers, and backbone charges of ionic microgels depend on
the synthesis method. For simplicity, we assume here uniform dis-
tributions.10 The charged microgel backbone polymers and cross-
linkers coexist with polymer-released counterions and salt ions
dissolved in the solvent. For temperatures T > Tcr higher than
the lower critical solution temperature (LCST) Tcr of the corre-
sponding polymer solution, the microgels are collapsed into a dry
state, characterized by a dry radius a0 < a, where a is the equi-
librium radius of the swollen microgel at a temperature lower
than the LCST. The swollen microgel radius depends, in addition
to temperature and solvent quality, on the elastic properties of
the backbone network and the backbone charge, and furthermore
on the microgel concentration and background (reservoir) ionic
strength. Two methods used in this paper to calculate the swelling
ratio

α = a

a0
(1)

are described in Sec. III. Assuming that a single microgel consists of
a uniform polymer network with Nmon monomers, the dry micro-

gel radius a0 is well approximated by a0 ≈ (Nmon/ϕrcp)1/3amon,
where ϕrcp = 0.64 is the volume fraction for random close-packing of
spherical monomers and amon is the monomer radius. It is assumed
here that random close-packing is the unstressed polymer backbone
structure in the collapsed state.8,20–22

We consider in this paper a monodisperse microgel suspen-
sion formed by N spherical microgels, each of negative backbone
charge − Ze, with e being the proton charge, dispersed in a volume
V of water at room temperature T. The suspension is assumed to
be in (Donnan) osmotic equilibrium with a 1:1 strong electrolyte
reservoir of ion concentration 2nres, via an ideal membrane per-
meable to the microions and solvent only. The counterions disso-
ciated from the backbones are likewise taken as monodisperse. The
microgel concentration (number density) n = N/V determines the
volume fraction ϕ0 = 4πa30n/3 of dry microgels and the volume
fraction ϕ = 4πa3n/3 of swollen microgels. The dry volume fraction
should be thought of as a nondimensionalized microgel concentra-
tion. For simplicity, the backbone valence Z > 0 is assumed to be
constant, independent of concentration, ionic strength, and equilib-
rium radius, thus disregarding possible chemical charge regulation
effects. Here, Z should be viewed as net backbone valence, already
accounting for the possibility of Manning counterion condensa-
tion on polymer sites. Global electroneutrality implies ZN = ⟨N+⟩− ⟨N−⟩, where Ns = ⟨N−⟩ is the equilibrium number of monodis-
perse coions in the system, equal to the number Ns of salt ion pairs,
and ⟨N+⟩ is the equilibrium number of monovalent counterions.
The concentration (number density) ns = Ns/V of salt ion pairs
in the suspension is determined by the equality, μ± = μres, of the
microion chemical potentials of cations and anions, μ±, in the sus-
pension and the microion chemical potential, μres = kBT ln(Λ3

0nres),
in the reservoir, assuming equal thermal de Broglie wavelength Λ0

for all microions. In Donnan equilibrium, the salt pair concentration
ns in the suspension is determined by the given reservoir salt pair

concentration (number density) nres. A closed suspension of given
salt content can be straightforwardly mapped to an equivalent Don-
nan equilibrium system using an accordingly selected salt concen-
tration nres ≥ ns.

Our starting point in deriving the one-component model of
pseudo-microgels is a semigrand canonical description of uniform-
backbone spherical microgels with the solvent degrees of freedom
already integrated out. This amounts to describing the solvent stat-
ically as a dielectric continuum of dielectric constant ε and Bjer-
rum length λB = e2/(εkBT) and dynamically as a Newtonian solvent
of shear viscosity η0. In this McMillan-Mayer implicit solvent pic-
ture, the semigrand canonical partition function of the suspension
reads

Ξ = ⟨⟨⟨e−β(K+Um+Umm+Umμ+Uμμ)⟩
p
⟩
μ
⟩
m

. (2)

Here, β = 1/(kBT), K is the total kinetic energy of all polymeric
and ionic suspension constituents, and the angular brackets denote
canonical traces over polymer (p) and center-of-mass microgel (m)
coordinates, and grand-canonical traces over the microion (μ) coor-
dinates. The polymer coordinates are particle-internal degrees of
freedom associated with themotion of segments and associated fixed
charges constituting the cross-linked polymer chains. In the Boltz-
mann factor, Um is the single-microgel energy, comprising both
polymeric and electrostatic self-energies, Umm incorporates poly-
meric and electrostatic energies of interaction between the micro-
gels, and Umμ and Uμμ account, respectively, for microgel–microion
and microion–microion interactions.

Performing the trace over polymer coordinates and exploiting
the decoupling of electrostatic and polymeric contributions to the
free energy resulting from the assumption of a uniform distribution
of backbone charges, one obtains

Ξ = e−β(Ue+Fp)⟨⟨e−β(Km,μ+Umm+Umμ+Uμμ)⟩
μ
⟩
m
, (3)

where Ue is the sum of the electrostatic self-energies of the N
microgels, which for uniformly distributed backbone charges is

Ue(a) = N∑
i=1

ue(a) = N(3
5

Z2e2

εa
), (4)

with the equilibrium radius a of swollen microgels. Furthermore,
Km,μ is the translational kinetic energy associated with the center-
of-mass microgel (m) and microion (μ) coordinates.

The free energy associated with the nonelectrostatic polymeric
degrees of freedom of the N microgels is

Fp(a) = N∑
i=1

fp(a). (5)

We use the Flory-Rehner theory20–22 to approximate the polymer
free energy permicrogel, f p(a), for a particle network with uniformly
distributed cross-linkers that is divided into Nch chains, i.e.,

βfp(a) = Nmon[(α3 − 1) ln(1 − α−3) + χ(1 − α−3)]
+
3

2
Nch(α2 − ln α − 1), (6)
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where χ is the Flory solvency parameter, α is the swelling ratio,
and Nmon is the total number of polymer monomers in a micro-
gel. The first term on the right-hand side is the ideal mixing
entropy of microgel monomers and solvent molecules. The sec-
ond term accounts for polymer-solvent interactions in a mean-
field approximation by neglecting interparticle correlations. The last
term accounts for the elastic free energy for isotropic stretching of
the microgel network, with the polymers treated as Gaussian coils.
As argued in Refs. 10 and 12, the approximations employed here
for the microgel backbone self-energies are reasonable for loosely
cross-linked, uniformly structured microgels.

Tracing out, in a second step, the microion degrees of freedom
for fixed configuration of microgels leads to the expression10

Ξ = ⟨e−βHeff⟩m, (7)

with the effective Hamiltonian of pseudo-microgels,

Heff = Km +Ue + Fp + EV(n) +Ueff(n), (8)

where Km accounts for the translational kinetic energy of the
microgels, EV(n) is the microgel configuration-independent vol-
ume energy, and Ueff(n) is the configuration-dependent effec-
tive N-particle interaction energy of pseudo-microgels. The lat-
ter, which incorporates electrostatic screening by the traced-out
microions, consists of the bare interaction energy, Umm, comprising
the concentration-independent Coulomb and elastic intermicrogel
interactions, and a concentration- and temperature-dependent con-
tribution, related to the free energy of microions in the presence of
the microgels. Note that the effective Hamiltonian Heff depends on
the particle swelling ratio, since each contribution on the right-hand
side of Eq. (8), aside from the kinetic energy Km, implicitly depends
on the particle radius a.

With F = −kBT ln Ξ denoting the semigrand suspension free
energy, the pressure, p, of the multicomponent suspension, con-
sisting of polymer networks with charged sites and microions,
is then determined by the generalized one-component virial
equation,19

p = −( ∂F
∂V
)
res

= pV + pse + nkBT − 1

3V
⟨ N∑
i=1

ri ⋅
∂Ueff

∂ri
⟩
eff

− ⟨∂Ueff

∂V
⟩
eff
, (9)

invoking an extra volume derivative term due to the concentration
dependence of Ueff(X;n). Here, X = {r1, . . ., rN} are the center-
of-mass positions of microgels and pV = −∂EV/∂V is the pressure
contribution of the volume energy. There is an another pressure
contribution, pse = n2∂[ue(a) + f p(a)]/∂n, originating from the elec-
trostatic and polymeric self-energies (se) per particle, owing to their
implicit concentration dependence via the equilibrium radius a(n).
This contribution is absent for incompressible particles. The angu-
lar brackets ⟨⋯⟩eff denote the canonical average with respect to
the equilibrium distribution function, Peq(X) ∝ exp[−βUeff(X)], of
pseudo-microgels, not to be confused with the canonical microgel
trace ⟨⋯⟩m over microgel center positions and momenta. The vol-
ume derivative of F in Eq. (9) is for fixed reservoir ion chemical
potentials and, hence, fixed nres. The generalized virial equation does

not suffer from ambiguities introduced when state-dependent pair
potentials are combined in an ad hoc manner with the compress-
ibility and virial equation of state expressions for one-component
simple liquids.28,29

In Donnan equilibrium, the reduced microgel osmotic com-
pressibility can be expressed via the Kirkwood-Buff (KB) rela-
tion,30,31

kBT(∂n
∂p
)
res

= 1 + n∫ d
3
r[g(r;n) − 1] = S(q→ 0;n), (10)

solely in terms of the solvent-averaged microgel radial distribution
function g(r; n) = gmm(r; n), which in turn is solely determined by
the effective interaction energy Ueff. In contrast, p is not determined
byUeff(n) alone since it has also a pressure contribution arising from
the volume energy. The KB relation follows from the isothermal dif-
ferential Gibbs-Duhem relation in Donnan equilibrium, dp = n dμ,
where μ is the microgel chemical potential, in conjunction with the
relation βS(0;n) = (∂ lnn/∂μ)T,μ± for the zero-wavenumber struc-

ture factor of the microgels confined to the suspension. The radial
distribution function is basically the inverse Fourier transform of the
microgel structure factor,32

S(q;n) = 1 + 4πn∫ ∞

0
dr r

2 [g(r;n) − 1] sin(qr)
qr

, (11)

determined in static scattering experiments as a function of the
scattering wavenumber q. The zero-wavenumber limit of S(q; n) is
proportional to the osmotic compressibility.

The volume and concentration derivatives, taken in Eqs. (9)
and (10), respectively, are for fixed reservoir properties, i.e., fixed
nres and T, so that ∂p/∂n = ∂πos/∂n, where

πos = p − 2kBTnres (12)

is the osmotic pressure of the suspension, measured relative to the
reservoir pressure pres. Nonideality contributions to the reservoir
pressure are negligible for the considered reservoir ionic strengths
of monovalent electrolyte ions. Note that both the generalized virial
equation and the KB relation are valid also for a nonpairwise additive
Ueff.

For weak particle overlap, it is reasonable to assume pairwise
additive elastic forces which for swollen volume fractions ϕ ≲ 1 can
be reasonably modeled27 by the Hertz pair potential,26

βuH(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εH(1 − r

2a
)5/2, r ≤ 2a,

0, r > 2a,
(13)

where r is the center-to-center separation of two particles. The
Hertz soft particle radius is identified with the equilibrium (swollen)
radius a. The reduced interaction (softness) parameter εH is deter-
mined by the single-particle elastic moduli, independent of tem-
perature and particle volume,24 and it scales linearly with Nch. The
pairwise-additive bare microgel interaction energy is thus

Umm(X) = N∑
i<j
[uH(rij) + uC(rij)], (14)
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where uC(rij) is the Coulomb interaction energy between microgels
i and j at center-to-center distance rij, modeled as the electrostatic
energy of two uniform spherical charge clouds, each of charge −Ze
and radius a.

To obtain the effective potential energy, Ueff(X; n), of N
pseudo-microgels, the concentration-dependent free energy con-
tribution due to the traced out microions needs to be calcu-
lated. Assuming weak perturbation of the microion distribution by
the uniform microgel backbone charges, this can be done using
the linear-response approximation method of Denton.18,23,24 This
method invokes a random phase approximation for the static
response functions of a reference plasma of pointlike-assumed
microions, resulting in a linear superposition of isotropic coion and
counterion concentration profiles (orbitals), n±(|r − ri|), centered
at the respective microgel positions ri. The effective N-microgel
interaction energy has then only two-body contributions so that

Ueff(X;n) = N∑
i<j

ueff(rij;n). (15)

The effective electrostatic pair potential in the linear-response
approximation is of different functional forms for overlapping and
nonoverlapping microgels, i.e.,

ueff(r;n) =
⎧⎪⎪⎨⎪⎪⎩
uY(r;n), r > 2a,
uov(r;n) + uH(r), r ≤ 2a. (16)

For nonoverlapping pairs, the effective electrostatic pair potential
has the functional form of a screened-Coulomb (i.e., Yukawa-type)
potential,18,19,23

βuY(r;n) = λB[Znet(n)]2( eκa

1 + κa
)2 e−κr

r
, (17)

with net microgel valence,

Znet = Z 3(1 + κa)
(κa)2 eκa [cosh(κa) −

sinh(κa)
κa

], (18)

depending on the product, κa, of the Debye screening constant κ and
the swollen radius a. The net microgel valence is obtained from

Znet(n) = Z − 4π∫ a

0
[n+(r) − n−(r)]r2dr, (19)

using the linear-response prediction for the equilibrium counte-
rion and coion concentration orbitals n±(r). The Debye screening
constant has the form

κ
2 = 4πλB(Zn + 2ns), (20)

with dependence on the microgel concentration n and salt pair
concentration ns in the suspension. The somewhat lengthy expres-
sion for the repulsive effective electrostatic potential of overlap-
ping microgels, uov(r; n), which depends on Z and κa, is given
elsewhere.18,19,23 As an ultrasoft potential, uov(r; n) is bounded
with zero slope (no repulsion) for full overlap of two spheri-
cal microgels and connects smoothly with uY(r; n) at r = 2a,
where the first derivatives are equal. Since uH(r) and its first

derivative are zero at contact distance, also ueff(r) crosses over
smoothly at r = 2a.

We note that the basic approximation underlying the no-
overlap effective pair potential uY(r) [Eq. (16)] between microgels
of a given equilibrium radius is a linearized Poisson-Boltzmann
description of the integrated-out microions, which entirely neglects
mutual correlations of free microions, including those due to their
nonzero size. This mean-field approximation necessitates monova-
lency of the microions, a small microion-microgel size ratio, and a
relatively lowmicrogel backbone charge. Regarding the effective pair
potential for overlapping microgels, the basic additional approxi-
mation is the separability of electrostatic and elastic contributions,
where the elastic contribution is described summarily using the
continuum-mechanics-based Hertz potential, which is applicable
only for modest microgel overlap.27

Owing to the pairwise additivity of Ueff(n) in the invoked
linear-response electrostatic plus Flory-Hertz elasticity approxima-
tions, the generalized virial equation for the suspension pressure
reduces to25

βp = n − 2π

3
n
2 ∫ ∞

0
drr

3
g(r)∂βueff(r)

∂r

+2πn3∫ ∞

0
drr

2
g(r)∂βueff(r)

∂n
+ βpV + βpse. (21)

From the explicit expression for the volume energy EV(n) in the
linear-response approximation, the corresponding pressure contri-
bution is19

βpV = n2(∂βεV
∂n
)
res
= Zn + 2ns +

3Z2

2

λB

a
n[− 1

κ̃2
+

9

4κ̃3
−

15

4κ̃5

+ ( 3

2κ̃2
+

21

4κ̃3
+

15

2κ̃4
+

15

4κ̃5
)e−2κ̃], (22)

where κ̃ = κa and εV = EV/N is the volume energy per particle. Note
that the (reduced) kinetic pressure of the microions, Zn + 2ns, is
included in pV.

In calculations of the osmotic compressibility, one can take
advantage of a theorem by Henderson,33 asserting that for a
one-component system with only pairwise interactions, for each
considered thermodynamic state (concentration n), there is a one-
to-one correspondence between g(r; n) and the underlying pair
potential, up to an irrelevant additive constant for the latter. As
thoroughly discussed in Refs. 29 and 31, at given concentration n
and temperature, the osmotic compressibility can thus be obtained
also from the concentration derivative of the suspension pressure,
pOCM, for a fictitious system with state-independent pair potential
u(r) = ueff(r; n, T). Explicitly,

(∂p
∂n
)
res
= (∂pOCM

∂n
)
ueff

, (23)

where pOCM is the one-component model (OCM) pressure of the
fictitious system, given by the right-hand side of Eq. (21) without
volume pressure pV and without the integral invoking the con-
centration derivative of ueff(r; n). The concentration derivative on
the right-hand side of Eq. (23) is taken for fixed ueff, by discard-
ing any concentration dependence of the effective pair potential,
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which amounts to keeping κa and Znet fixed to their values at the
considered concentration. A consistency test of the approximations
used in calculating ueff(r; n), the equilibrium radius a, and g(r; n)
follows from comparing numerical values for the reduced osmotic
compressibility identified by S(q → 0; n) with values obtained from
Eq. (23).

III. MICROION-INDUCED DESWELLING

So far, we have treated the microgel radius as a given quantity.
However, as pointed out in the Introduction, it is actually a state-
dependent thermodynamic variable whose equilibrium mean value,
a, for temperatures T < Tcr in the swollen state, is determined from
minimization of the semigrand free energy F(at) of the suspension
with respect to trial radius values at. The necessary condition for
determining a is thus

∂F

∂at
∣
N,Z,res

= 0, (24)

at at = a. In addition to the dry radius a0 and the electrostatic param-
eters Z and nres, the elasticity-related Flory-Rehner and Hertz poten-
tial parameters, χ, Nm, Nch, and εH, are kept constant in taking the
size derivative. In this way, a is determined as a function of the con-
trol parameters n, Z, and nres for fixed temperature and microgel
elastic properties.

The minimization of F with respect to at is equivalent to the
mechanical requirement that the intrinsic pressure difference,8,9

Π(at) = Πg(at) +Πe(at), (25)

between the interior and exterior of a single microgel is zero at ther-
modynamic equilibrium, where at = a. Upon swelling of a microgel,
the intrinsic electrostatic pressure, which is nonzero both inside and
outside the particle, must adjust to any variation of the intrinsic gel
pressure to ensure, in equilibrium, continuity of the total intrinsic
pressure across the particle periphery.

The radius-dependent gel-elasticity pressure contribution, Πg,
due to solvency, elasticity, and mixing entropy of individual micro-
gel networks and the Hertz elastic pair interactions, is given in the
present microgel model by

Πg(at) = − ∂

∂vt
[fp(at) + n

2
⟨uH(r; at)⟩eff], (26)

where vt = 4πa3t /3 is the microgel trial volume. The electrostatic
pressure contribution to Π(at) is

Πe(at) = − ∂

∂vt
[ue(at) + εV(at) + n

2
⟨ueleff(r; at)⟩eff], (27)

where ue(at) is the electrostatic self-energy of the uniform back-

bone microgel charge and ueleff(r; at) is the effective electrostatic pair
potential without Hertz part [Eq. (16)]. For conditions where over-
lap distances are very unlikely, the Hertz potential energy does not
contribute to Π(at) and the canonical average ⟨⋯⟩eff over the cen-
ter positions of pseudo-microgels of radius at is determined alone
by the Flory-Rehner and electrostatic parameters. The equilibrium
radius is determined by the competition between Πg, which is neg-
ative for at sufficiently larger than a0 favoring deswelling, and the

positive-valued Πe(at) favoring swelling. Physically, the microion
distribution in the microgel interior and the self-repulsion of the
charged sites of the polymer backbone network generate an outward
electrostatic pressure that swells the macroion. This swelling is lim-
ited by the inward elastic restoring forces due to the cross-linked
polymer gel. In equilibrium, the balance between these opposing
pressures determines the microgel size. In principle, an additional
contribution to the pressure difference across the periphery of a
microgel may arise from the Laplace pressure, 2γ/a, associated with
the interfacial tension γ at the interface between themicrogel and the
solution. We assume, however, that the water-swollen polymer gel
is sufficiently dilute, weakly cross-linked, and hydrophilic that this
interfacial contribution is negligible compared with the electrostatic
and gel contributions to the total intrinsic pressure.

Themicrogel surface plays here the role of amobile semiperme-
able membrane, permeable to microions and solvent only where the
outer and inner pressures balance toΠ(a) = 0 at mechanical equilib-
rium. This single-particle osmotic pressure should be distinguished
from the nonzero suspension osmotic pressure, πos = p − pres, act-
ing across a (mentally pictured) fixed semipermeable membrane
separating the suspension from the microion reservoir.

In the following, we describe and contrast two methods used
for calculating the state-dependent equilibrium radius a as a func-
tion of microgel concentration, backbone valence, and reservoir
salt concentration. The first method makes direct use of Eq. (24)
and of the one-component multicenter picture of pseudo-macroions
interacting electrostatically by the linear-response effective pair
potential ueff(r), using a thermodynamic perturbation theory (TPT)
approximation for the semigrand free energy. The second method
invokes a spherical cell model (CM) approximation for the sem-
igrand free energy of a single macroion with nonlinear Poisson-
Boltzmann (PB) distributions of microions, referred to accordingly
as the PBCM method. The two methods differ in the manner
in which they treat intermicrogel electrostatic interactions and
correlations.

A. Thermodynamic perturbation theory

In the thermodynamic perturbation theory (TPT) method, the
equilibrium radius a is obtained by minimizing the semigrand free
energy per microgel,10

F(at,n)
N

= ue(at) + εV(at) + fp(at) + fex(at,n), (28)

with respect to trial radius values at. We have disregarded here the
kinetic (ideal gas) free energy contribution, ln(Λ3

mn) − 1, to F/N,
where Λm denotes the thermal de Broglie wavelength of micro-
gels, since it is independent of at. The excess semigrand free energy
per microgel, f ex(at, n), is due to the effective interactions between
the pseudo-microgels. Provided that Ueff(X; n) is pairwise additive,
f ex(at, n) is exactly given by the charging-process (λ-integration)
expression25,29

fex(at,n) = n

2 ∫ d
3
r[uH(r; at) + u

el
eff(r; at,n)]∫ 1

0
dλgλ(r; at,n),

(29)

irrespective of whether the pair potential is state-dependent or not.
Here, gλ(r; at, n) is the RDF corresponding to the pair potential
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λ[uH(r) + ueleff(r)] at charging fraction λ, which ranges from gλ(r)
= 1 for λ = 0 to the RDF of the actual suspension for λ = 1. In
principle, the above two-step integral expression can be used in
Eq. (28) to determine a by minimization of F(at, n). Moreover,
it provides another route to determine the suspension pressure p
and the osmotic compressibility from the first and second volume
derivatives of F(a, n).

To avoid the cumbersome double integration involving the
calculation of a large number of RDFs for different values of λ,
we approximate f ex(at, n) instead using the first-order perturbation
expression25 given by the right-hand side of

fex(at,n) ≤ min
(d)
{fEHS(d,n)+2πn∫ ∞

d
drr

2
gEHS(r;d,n)ueff(r; at,n)},

(30)

which invokes a reference system of effective hard spheres (EHSs) of
diameter d, RDF gEHS(r; d, n), and free energy per particle f EHS(d, n).
The EHS free energy, f EHS, is accurately described by the analytic
Carnahan-Starling free energy expression, and the EHS RDF is accu-
rately described by the semianalytic Percus-Yevick (PY) result34 with
Verlet-Weis correction.25 The above perturbation expression pro-
vides an upper bound to the actual excess free energy f ex(at, n) for
all values of the effective diameter d as follows from the Gibbs-
Bogoliubov inequality.25 The equilibrium radius a results from the
(double) minimization of F(at, n)/N in Eq. (28) with respect to at,
after substitution of the right-hand side of Eq. (30) for the excess
free energy minimized with respect to d > 0. For ueff and εV, we use
the analytic linear-response expressions of Denton et al.,18,19 and for
f p(at), we use the Flory-Rehner expression given in Eq. (6).

In the TPT, the suspension pressure can be computed from f (a,
n) = F(a, n)/N using the thermodynamic relation,

p = n2(∂f (a,n)
∂n

)
res

, (31)

where the concentration dependence of a(n) must be accounted for,
giving rise, in particular, to the extra pressure contribution pse. In
taking the concentration derivative, the electroneutrality condition
ns = ⟨N+⟩/V − nZ must be maintained for given Z. The suspen-
sion salt pair concentration ns, which affects κ(n, ns), and hence the
range of the effective pair potential in the TPT expression for f ex(a,
n) in Eq. (30), is determined, in turn, from equating the microion
chemical potentials in suspension and reservoir, using ⟨N−⟩ = Ns,
according to

∂

∂ns
[n(εV(a) + fex(a,n))]

n
= kBT ln(Λ3

0nres). (32)

The TPT method was successfully tested in earlier works
for deswelling ionic microgels,10 incompressible ionic microgels,19

and impermeable charged colloids.35 The method self-consistently
incorporates effective microgel pair interactions for low to moder-
ately high Z, where linear-response theory can be used.

B. Poisson-Boltzmann cell model

The PBCM applies to suspensions of ionic microgels, where
on average around each microgel, there is a region void of oth-
ers.36 This condition requires sufficiently strong and long-ranged

electrostatic repulsion between the microgels and concentrations
small enough that particle overlap is unlikely. In this case, a Wigner-
Seitz (WS) cell tessellation can be used, with each WS cell subse-
quently approximated by an overall electroneutral spherical cell of

radius R = (3/4π)1/3n−1/3, containing a single spherical microgel of
radius at at its center. In Donnan equilibrium, the cell is in osmotic
contact with a 1:1 strong electrolyte reservoir of salt pair concen-
tration 2 nres. In the PBCM, the radially symmetric concentration
profiles n±(r) of the pointlike monovalent microions dissolved in a
structureless dielectric solvent of Bjerrum length λB are described in

a mean-field way by the Boltzmann distributions, n±(r) = nrese
∓Φ(r),

whereΦ(r) = ψ(r)e/kBT is the reduced form of the total electrostatic
potential ψ(r) due to all charges in the cell. As in the TPT method,
polarization and image charge effects are disregarded, which can be
justified by the high solvent content of weakly cross-linked, swollen
microgels. While the cell model focuses on only a single microgel,
with the semigrand suspension free energy being N times that of
the cell, the presence of other microgels is implicitly accounted for
through the cell radius R and the associated (trial) volume fraction

ϕt = (at/R)3.
Assuming, as in the TPT, a uniform backbone charge distribu-

tion inside eachmicrogel, the electrostatic potential in the cell region
0 < r < R is obtained from solving the nonlinear Poisson-Boltzmann
(PB) equation,

Φ
′′(r) + 2

r
Φ
′(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κ2res sinhΦ(r) + 3ZλB

a3t
, 0 < r ≤ at,

κ2res sinhΦ(r), at < r ≤ R,
(33)

where κ2res = 8πλBnres is the square of the reservoir Debye screen-
ing constant. The solution for Φ(r) is uniquely determined by the
boundary conditions, Φ′(0) = 0 = Φ

′(R), on the electric field at
the cell center and edge, and by the continuity conditions, Φ(a−t )= Φ(a+t ) and Φ

′(a−t ) = Φ
′(a+t ), at the microgel surface. Once

Φ(r) and hence the microion concentration distributions are deter-
mined by numerically solving Eq. (33) for given boundary condi-
tions and microgel trial radius at, the intrinsic osmotic pressure
Π(at) in the PBCM follows from Eqs. (26) and (27) taken for ⟨uH⟩eff= 0 = ⟨ueff⟩eff and for εV replaced by ⟨umμ(r)⟩μ, i.e., by the elec-
trostatic interaction energy between the uniform central microgel
backbone charge and pointlike microions, weighted by the microion
number density profiles VRn±(r) and averaged over the cell vol-
ume VR = (4π/3)R3. Considering the variation of the electrostatic
component of the free energy with respect to the microgel radius
leads to an exact statistical mechanical relation for the electrostatic
pressure,9

βΠe(at)vt = ZλB

2at
(2
5
Z − ⟨N+⟩ + ⟨N−⟩ + ⟨r2⟩+ − ⟨r2⟩−

a2t
), (34)

where

⟨N±⟩ = 4π∫ at

0
n±(r)r2dr (35)

and

⟨r2⟩± = 4π∫ at

0
n±(r)r4dr (36)
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are the mean numbers of internal microions and the second
moments of the interior microion number density profiles, respec-
tively.

Using Eq. (6), the polymer gel contribution to the intrinsic
osmotic pressure for trial radius at is

9

βΠg(at)vt = −Nm[α3 ln(1 − α−3) + χα−3 + 1] −Nch(α2 − 1/2). (37)

According to Eq. (25), the equilibrium microgel radius is obtained
from setting the sum of the intrinsic pressure contributions in
Eqs. (34) and (37) equal to zero.

Once the microgel equilibrium radius is determined, the pres-
sure in the cell model due to the mobile microions, pμ, follows from

the contact theorem,37

βpμ = n+(R; a) + n−(R; a), (38)

i.e., from the microion concentrations at the cell edge, where the
electric field vanishes due to overall electroneutrality. In addition to
the kinetic (ideal gas) microgel pressure nkBT, there are microgel-
correlation-induced pressure contributions to the suspension pres-
sure, p, not accounted for in the cell model. Therefore, pμ can differ
significantly from p, except for relatively low reservoir salt concen-
trations, where the dominant number of backbone-released counte-
rions (ZN ≫ Ns) contributes the most to p.31 As shown elsewhere,38

in this counterion-dominated regime, where Zn ≫ 2nres, the dom-
inant contribution to p in Eq. (21) stems from the volume energy-
related pressure pV. Akin to the cell model pressure pμ, the pressure
contribution pV arises from the microions in the presence of fixed
microgels. The positive-valuedOCMpressure on the right-hand side
of Eq. (21) is nearly compensated at low salinity by the negative-
valued pressure contribution from the concentration derivative of
ueff(r; n). While this compensation is observed for nonpermeable
charge-stabilized colloids,38 it likely holds also for ionic microgels.
One should not infer from this compensation, however, the practi-
cal identity of pμ and pV in the counterion-dominated concentration
region, since the underlying models, i.e., spherical cell vs multi-
center model, and the respectively invoked approximations (linear-
response theory vs PB approximation) in the pressure calculations
are distinctly different.

In the cell model, the net microgel valence Znet is calculated by
means of Eq. (19) using the microion number density profiles n±(r;
a), and the suspension salt pair concentration ns, by integrating the
coion (anion) profile over the cell volume according to

ns = 4π

VR
∫ R

0
n−(r; a)r2 dr. (39)

While TPT is self-consistently linked to the effective pair poten-
tial ueff(r) in Eq. (16), characterized by Znet and κa for given
backbone valence Z, such a direct link does not exist in the single-
microgel PBCM, which does, however, incorporate a nonlinear elec-
trostatic response of the microions that is neglected in the TPT.
However, an ad hoc link between PBCM and the linear-response
ueff(r) is readily established, for given Z, by identifying Znet and κa
in the no-overlap Yukawa potential in Eq. (17) with the PBCM-
calculated values Z∗net and κ

∗a∗, respectively, where

(κ∗)2 = 4πλB(nZ∗ + 2n∗s ) (40)

and the asterisk labels PBCM-calculated properties. An apparent
backbone valence Z∗ is defined here as a function of Z∗net and
κ∗a∗ by

Z
∗
net = Z∗ 3(1 + κ∗a∗)

(κ∗a∗)2 eκ∗a∗ [cosh(κ
∗
a
∗) − sinh(κ∗a∗)

κ∗a∗
], (41)

which when used in the expression for the overlap electrostatic
potential uov(r), according to the substitution {Z, a, κ} → {Z∗, a∗,
κ∗}, maintains the continuity of the effective potential and its first
derivative at r = 2a. Substitution of Z∗ into Eq. (40) gives an implicit
equation for κ∗, which can be solved iteratively. For lower backbone
valences Z ≤ 200, Z∗ is close to Z so that the latter can be used instead
as input in Eq. (40).

Most results presented here are for ionic microgel systems with
electrostatic coupling strengths Γel ≡ ZnetλB/a ≲ 5, where nonlinear
electrostatic effects by the microions are negligible or sufficiently
small that both TPT and PBCM can be directly used in conjunction
with the linear theory effective pair potential in Eq. (17). For stronger
electrostatic couplings, experience gained with rigid charged colloids
suggests that the Yukawa form of the effective potential in Eq. (17)
is still applicable, but now for renormalized values of Z and κ, which
can be obtained, e.g., from linearization of the potential Φ(r) in the
cell model with respect to its value at the cell boundary8 or with
respect to the cell volume averaged potential value. While micro-
gel charge-renormalization is not in the focus of this paper, in the
framework of PBCM, we use it to assess the concentration shift at
a fluid-solid freezing transition caused by the deswelling of strongly
charged microgels.

IV. THERMODYNAMICS AND STRUCTURE

Once the mean radius a is determined for given system param-
eters n, Z, nres, χ, Nmon, Nch, and εH, we are in the position
to calculate thermodynamic, structural, and dynamic properties
of the one-component suspension of pseudo-microgels interact-
ing via the effective pair potential in Eq. (16). As we show below
in Sec. VI, the TPT and PBCM predictions for a are quantita-
tively different, as reflected in the calculated static and dynamic
properties.

Our methods for calculating dynamic properties of the micro-
gel suspension require the static structure factor, S(q), of microgels
and the associated radial distribution function, g(r), as the only
input. Since ueff(r; n) is purely repulsive, we can use the thermo-
dynamically self-consistent Rogers-Young (RY) integral-equation
scheme25 for calculating these structural properties. This hybrid
scheme, which uses a closure mixing function interpolating between
the hypernetted chain (HNC) and Percus-Yevick (PY) integral-
equation schemes,25 is known from comparisons with computer
simulation data to make accurate structural predictions for a vari-
ety of repulsive interaction potentials, including the screened-
Coulomb potential39,40 used to model nonoverlapping ionic
microgels. The mixing parameter in the RY mixing function is
determined self-consistently from enforcing equality of the microgel
osmotic compressibility obtained from the one-component com-
pressibility and virial equation of states, respectively, i.e., from
demanding
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1

S(q = 0;α) = β(
∂pOCM(α)

∂n
)
ueff

(42)

in accord with Eqs. (10) and (23).
With the mixing parameter determined self-consistently, the

pressure p can be calculated in the TPT using the thermodynamic
relation in Eq. (31). Alternatively, the pressure can be calculated
from Eq. (21) using the RY-g(r) as input, in conjunction with the
volume energy-related pressure contribution pV in Eq. (22). Differ-
ences in the predictions for p by the two routes reflect the accuracies
of the approximations going into the TPT and RY methods.

V. DYNAMIC PROPERTIES

A. General theory

The employed methods for calculating dynamic properties of
microgel suspensions are based on the one-component model of
pseudo-microgels interacting by the state-dependent effective pair
potential in Eq. (16). With regard to dynamic properties, different
colloidal time regimes need to be distinguished.32,41

We focus mainly on the colloidal short-time regime, charac-
terized by correlation times t for which τB ≪ t ≪ τI holds, i.e., for
times twell separated from the long-time regime, where t≫ τI. Here,
τB = M/(6πη0ah), with M being the particle (microgel) mass and
ah being the hydrodynamic particle radius, is the particle momen-
tum relaxation time characterizing the time range wheremomentum
changes (i.e., inertia) matters. Moreover, τI = a2/d0 is the structural
relaxation time, where d0 = kBT/(6πη0ah) is the Stokes-Einstein-
Sutherland translational free diffusion coefficient of a spherical
colloidal particle. Moreover, η0 is the shear viscosity of the suspend-
ing low-molecular-weight Newtonian solvent (i.e., water). Owing
to the low hydrodynamic permeability of (ionic) microgels,42 we
identify for simplicity the hydrodynamic radius ah of the microgels
with the equilibrium radius a determined in the TPT and PBCM,
respectively.

During times t ≪ τI , over which particle displacements
by Brownian motion are minuscule compared to the particle
radius, short-time dynamic properties are influenced solely by the
intermicrogel hydrodynamic interactions (HIs), which are quasi-
instantaneously transmitted by intervening solvent-flow perturba-
tions. Short-time transport properties can thus be calculated as
genuine equilibrium averages of configuration-dependent hydro-
dynamic mobilities. The nondynamic interactions embodied in
ueff(r; n) are only indirectly influential through their effect on the
equilibrium microstructure encoded in g(r) and S(q). Long-time
transport properties, such as the zero-frequency, steady-shear sus-
pension viscosity η, and the long-time self-diffusion coefficient dl,
with the latter coefficient being proportional to the long-time slope
of the particle mean-squared displacement, are influenced addition-
ally by ueff(r; n) via noninstantaneous caging (i.e., memory) effects,
whose description requires, in general, more elaborate calculations.

The short-time diffusion of microgels is commonly probed
experimentally by measuring the q-dependent dynamic structure
factor S(q, t) using dynamic light scattering. At short times, S(q, t)
decays exponentially according to32,40,43

S(q, t ≪ τI) = S(q) exp{−q2D(q) t}, (43)

where D(q) is the wavenumber-dependent short-time diffusion
function characterizing the decay of concentration fluctuations of
wavelength 2π/q. A statistical-mechanical expression for D(q) fol-
lows from the generalized Smoluchowski diffusion equation of inter-
acting Brownian particles in the form of the ratio,32,40,43

D(q) = d0H(q)
S(q) , (44)

where H(q) is the so-called hydrodynamic function given by the
equilibrium average,32

H(q)=⟨ 1

Nμ0q2

N∑
l,j=1

q ⋅ μlj(X) ⋅ qeiq⋅(rl−rj)⟩
eff

, (45)

over the positional configurations X of the microgels.
Here, kBTμ0 = d0 and μlj(X) are the translational N-sphere

mobility tensors linearly relating the hydrodynamic force on a
sphere j to the instant velocity change of sphere l caused by the
solvent-transmitted HIs. These tensors depend on the instanta-
neous configuration, X, of the N microgel centers through the
specified hydrodynamic surface boundary conditions. The positive-
valued function H(q) is a measure of the influence of HIs on short-
time diffusion over the length scale ∼1/q. In the (hypothetical)
case of hydrodynamically noninteracting particles, H(q) ≡ 1, inde-
pendent of q and the particle concentration. Deviations of H(q)
from the infinite dilution value of one thus hallmark the influence
of HIs.

According to

H(q) = ds

d0
+Hd(q), (46)

the hydrodynamic function is the sum of a self-part equal to the
short-time self-diffusion coefficient ds (in units of d0), quantifying
the initial slope of the particle mean-square displacement, and a
wavenumber-dependent distinct part, Hd(q), accounting for hydro-
dynamic cross correlations between the microgels. The latter part
decays to zero at large q. For large qa≫ 1, the hydrodynamic func-
tion becomes thus equal to ds/d0, while for small wavenumbers
qa ≪ 1, it reduces to the (short-time) sedimentation coefficient
K(n) = H(q → 0; n) of a homogeneous suspension subjected to a
weak (gravitational) force field. The associated short-time collective
diffusion coefficient,

dc(n) = d0(n) K(n)
S(q→ 0;n) =

d0(n)K(n)
kBT(∂n/∂p)res , (47)

is even for a concentrated suspension only slightly larger (by a few
percent) than the long-time collective diffusion coefficient appearing
in the macroscopic Fickean constitutive law, which linearly relates
the particles current to the concentration gradient.40 This behavior
should be distinguished from self-diffusion, where dl ≈ 0.1 × ds right
at the fluid-crystal freezing transition point of a three-dimensional
colloidal system.44,45

An important feature distinguishing (ionic) microgels from
impermeable solid particles is that d0(n) = kBT/(6πη0a(n)) =
d
dry
0 /α(n) depends on concentration. Here, d

dry
0 is the Stokes-

Einstein-Sutherland diffusion coefficient of collapsed (dry) micro-
gels, and α(n) = a(n)/a0 is the swelling ratio at concentration n. In
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our calculations of diffusion and rheological properties, we identify
the hydrodynamic microgel radius for simplicity with the thermo-
dynamic mean particle radius a(n) as obtained by the TPT/PBCM
methods. While on first sight, this appears to be a severe approx-
imation owing to the solvent permeability of weakly cross-linked
(ionic) microgels, calculations show that the hydrodynamic penetra-
tion depth related to the Darcy permeability of microgels is actually
quite small so that solvent-permeability effects can be disregarded as
they play a noticeable role only at high concentrations.42

A nondiffusional, rheological short-time property characteriz-
ing the microgel suspension as a whole is the high-frequency viscos-
ity, η∞, for low shear rate amplitudes. This property linearly relates
the average deviatoric suspension shear stress to the applied rate of
strain in a low-amplitude, oscillatory shear experiment at frequen-
cies ω≫ 1/τI, where shear-induced perturbations of the microstruc-
ture away from the equilibrium spherical symmetry are negligible.
Experimentally, η∞ can be determined using a torsional rheometer
operated at high frequencies and low amplitudes.

The high-frequency viscosity is a purely hydrodynamic prop-
erty, related to the x-y component of the symmetric and trace-
less (deviatoric) hydrodynamic suspension stress tensor contribu-

tion,46,47 Σh(t), by η∞ − η0 = Σ
h
xy(t)/γ̇(t). Here, γ̇(t) = γ̇0 cos(ωt)

is the oscillatory shear rate of the incident solvent shear flow of fre-
quency ω≫ 1/τI and low amplitude γ̇0. The flow in the x direction
with the gradient in the y direction is characterized by the symmet-
ric and traceless (the latter owing to incompressibility) rate-of-strain
tensor e(t) = γ̇(t)(x̂ ŷ + ŷ x̂)/2, where x̂ and ŷ denote the unit vec-
tors in x and y directions, respectively. Dyadic tensor notation is
used here. The standard statistical physics expression for the hydro-
dynamic suspension stress tensor contribution in a homogeneous
suspension up to linear order in γ̇0 is then

46,47

Σ
h(t) = lim

q→0
⟨ 1
V

N∑
l,j=1

μ
dd
lj (X)eiq⋅(rl−rj)⟩

eff

: e(t), (48)

where μddlj is the fourth-rank dipole-dipole hydrodynamic ten-

sor having Cartesian components μddlj,αββα indexed by Greek sym-
bols. This tensor relates the symmetric hydrodynamic force dipole
moment tensor of microgel sphere l to the rate of strain tensor
evaluated at the center of a sphere j. The zero-wavenumber limit
is taken following the ensemble averaging over a macroscopic sys-
tem, i.e., after having taken the thermodynamic limit, guaranteeing
in this way convergence of the integrals following from the averag-
ing over the spatially slowly decaying hydrodynamic tensors.47 The
colon indicates inside-out double contraction of tensors. The zero-q
limiting average on the right-hand side of Eq. (48) is an average over
an unsheared isotropic suspension and is thus equal to an isotropic
fourth rank tensor Y with Cartesian components,

Yαβλμ = lim
q→0
⟨ 1
V

N∑
l,j=1

μ
dd
lj,αβλμ e

iq⋅(rl−rj)⟩
eff

= A

2
(δαλδβμ + δαμδβλ − 2

3
δαβδλμ), (49)

which stay the same in any rotated Cartesian frame of reference. The
tensor in the second equality, invoking binary products of Kronecker
δ-functions, is the most general isotropic fourth rank tensor that is

traceless and symmetric in its first two and last twoCartesian indices,

reflecting the according properties of e and Σ
h. Using A = Yαββα/5

and Y: e = Ae, where double contraction with respect to indices α

and β is implied, it follows with Σ
h = Ae = 2(η∞ − η0)e that47

η∞ − η0 = lim
q→0
⟨ 1

10V

N∑
l,j=1

μ
dd
lj,αββα(X)eiq⋅(rl−rj)⟩

eff

. (50)

This frame-independent expression serves as a starting point for our
calculations of η∞. In the special x-y flow-flow gradient frame, η∞
− η0 is given by the right-hand side of Eq. (50) without the fac-
tor 1/10 and with the invariant double contraction of dipole-dipole
hydrodynamic tensor components replaced by the single tensor

component μddlj,xyyx.
As an important colloidal long-time property, we compute also

the low shear rate, zero-frequency viscosity η > η∞, measured in a
suspension subjected to steady-state weak shear flow. The viscosity
η is the sum,48

η = η∞ + Δη, (51)

of η∞ and a shear stress relaxation contribution denoted Δη. The
latter contribution is related to the additional dissipation in the sus-
pension originating from stress relaxations of the shear-perturbed
next-neighbor particle cages formed around each microgel, and it
is influenced both by direct and hydrodynamic interactions. The
viscosity part Δη can be calculated based on an exact Green-Kubo
relation for the time integral of the equilibrium stress time autocor-
relation function where HIs are included.48

In the employed one-component model of ionic pseudo-
microgels, electrokinetic effects due to a noninstantaneous dynamic
response of the microion clouds formed inside and outside the
microgels are disregarded. These effects tend to lower dc and dl and
to increase η but, in general, by only small amounts. Electrokinetic
effects on diffusion and rheology are of secondary importance, in
particular, when nondilute suspensions are considered and when the
microions are small compared to the microgels, which is commonly
the case.

B. Methods of calculation

For the calculation of H(q), we use the well-established
analytic Beenakker-Mazur–pairwise-additivity (BM-PA) scheme.49

This scheme is a hybrid of the second-order Beenakker-Mazur (BM)
method, used here for the wavenumber-dependent distinct part
Hd(q), and the hydrodynamic pairwise-additivity (PA) approxima-
tion used for the q-independent self-part ds/d0. The BM-PA scheme
combines the advantages of the BM and PA methods. It requires the
microgel S(q) and g(r) as its only input, for which the RY results
based on ueff(r), and the TPT/PBCM results for a(n) and hence for
d0(n), are used. The overall good accuracy of the BM-PA scheme
was assessed by the comparison with elaborate dynamic simula-
tion results, where many-particles HIs are accounted for, and with
experimental H(q) data, for a variety of colloidal model systems,
including solvent-permeable hard spheres (nonionic microgels),
charge-stabilized rigid particles, and globular proteins exhibiting
short-range attraction and long-range repulsion.39,40,49,50 For details
about the employed BM-PA method, we refer to Ref. 49.
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For the here considered low-salinity microgel suspensions,
which show counterion-induced deswelling, we calculate the
high-frequency viscosity η∞ using a modified Beenakker-Mazur
mean-field method described in Ref. 49. In this semianalytic method
invoking one-dimensional integrals only, many-particle HIs are
approximately accounted for, but lubrication is disregarded. Lubri-
cation is irrelevant, however, for solvent-permeable microgels. Just
as the BM-PA scheme forH(q), the modified BMmethod for η∞ has
S(q) as its only input. The modified BM expression for η∞ is49

η∞

η0
= 1 + 5

2
ϕ(1 + ϕ) − 1

λ0
+

1

λ0 + λ2
, (52)

with the so-called zeroth and second-order BM viscosity contribu-
tions, λ0(ϕ) and λ2(ϕ), respectively, whose explicit forms are given
in Ref. 49. As explained in detail in this reference, the invoked mod-
ification of the standard BM expression for η∞/η0 is the subtrac-
tion of the structure-independent BM part 1/λ0 and its replacement
by the structure-independent pairwise additive viscosity contribu-
tion 1 + 2.5ϕ(1 + ϕ), which is known to give the dominant con-
tribution at low salinity and small volume fractions. The modified
BM expression is in very good agreement with Stokesian dynam-
ics simulation data for the high-frequency viscosity of low-salinity
charge-stabilized suspensions, even up to the freezing transition
concentration.

As noted above, the calculation of the shear relaxation contri-
bution Δη to the zero-frequency viscosity, η = η∞ + Δη, is more
demanding since it is explicitly influenced by direct and hydrody-
namic interactions. Starting from an exact but formal Green-Kubo
relation for Δη, mode-coupling theory (MCT) integro-differential
equations with HIs included have been derived for its approximate
calculation, whose numerical solution is quite involved. We use
therefore a simplified MCT theory expression for Δη, constituting
the first-iteration step in the self-consistent numerical solution of
the MCT equations. This simplified MCT expression is48

Δη

η0
= 1

40π ∫
∞

0
dy y

2 (S′(y))2
S(y)

1

H(y) , (53)

where y = 2qa and S′(y) = dS(y)/dy. HIs enter here only through the
dynamic structure factor S(q, t), which in turn is approximated by
its short-time form given by the right-hand side of Eq. (43) involv-
ing H(q). Since for correlated particles S(q, t) decays more slowly
than exponentially at longer times, Δη is somewhat underestimated
by Eq. (53), as compared to the fully self-consistent MCT viscos-
ity solution. This underestimation becomes more pronounced at
higher ϕ.

VI. RESULTS

To analyze the influence of counterion-induced deswelling on
thermodynamic, structural, and dynamic properties of ionic micro-
gel suspensions and to make contact with a recent study by Weyer
and Denton,10 in which TPT results for the mean microgel radius
were compared against computer simulations for salt-free systems,
we use the following system parameters, corresponding to aqueous
suspensions at lower salinity: solvent Bjerrum length λB = 0.714 nm
(i.e., water at temperature T = 293 K), backbone valences Z = 100,
200, and 500, dry microgel radius a0 = 10 nm, monomer number

per microgel Nmon = 2 × 105, polymer chain number per microgel
Nch = 100, solvency parameter χ = 0.5, and Hertz softness param-

eter εH = 1.5 × 104. For the 1:1 electrolyte reservoir concentration,
we use cres = 100 μM, if not stated otherwise, so that nres = cres NA,
where NA is the Avogadro number. Values of the dry volume frac-
tion ϕ0 = (4π/3)n0a30 in the range from 2 × 10−4 − 5 × 10−2 are
considered.

Note here that ϕ0 ∝ n has the meaning of a dimensionless
microgel concentration. The Debye screening length, 1/κ, in Eq. (20)
attains values from 40 to 4.4 nm, for (reduced) concentration val-
ues ϕ0 varied from 0.001 to 0.05. It is noteworthy that, for most of
the considered suspensions, κ is determined by the mean concen-
tration, Zn, of monovalent counterions released from the microgel
polymer backbone, which is significantly higher than the salt pair
concentration ns.

The electrostatic repulsion between the microgels is quantified
by the reduced electrostatic coupling strength Γel ≡ ZnetλB/a, which
in the present study is in the range of 1–9, comparable to values
for typical ionic microgel systems.4,5,51 The electrostatic repulsion
between the microgels is here strong enough that configurations of
microgels that are in contact or overlapping are very unlikely, such
that g(r ≤ 2a) ≈ 0. On the other hand, nonlinear screening effects are
in most cases weak enough that the linear TPT method can be used
for determining a, in addition to the PBCMmethod.

A. Equilibrium radius predictions

In the following, we analyze TPT and PBCM predictions for the
concentration-dependent microgel swelling ratio α(ϕ0) = a(ϕ0)/a0,
the suspension salt concentration ns(ϕ0), and the electrostatic cou-
pling strength Γel(ϕ0), where ϕ0 ∝ n is the nondimensional microgel
concentration.

The physical mechanism leading to counterion-induced
deswelling with increasing concentration can be reasoned on the
basis of Fig. 1, showing PBCM results, at two different concen-
trations for the radial dependence of the (reduced) total microion

charge density, ρel(r) = [n+(r) − n−(r)]e, and of the coion concen-
tration n−(r) (displayed in the inset) inside and outside of a nega-
tively charged microgel centered at r = 0. For both considered con-
centrations ϕ0, the counterions constitute the dominant microion

species where n+(r)≫ n−(r), and hence ρel(r) ≈ n+(r)e holds for the
total microgel charge concentration inside the cell up to its boundary

at radius R = a0/ϕ1/30 , where the curves in Fig. 1 terminate.
One clearly notes that both the equilibrium microgel radius a,

marked by the vertical line segments in the figure, and the cell radius
R decrease with increasing concentration. The counterion concen-
tration profile rises with increasing system concentration, while the
coion concentration profile falls. With increasing concentration, the
volume exterior to the microgels is reduced, making it less favor-
able (entropically) for counterions to reside outside the oppositely
charged microgel backbone region. Consequently, a fraction of the
outside counterions permeates into the backbone region, thereby
lowering the expansive intrinsic PBCM pressure contribution Πe

[Eq. (34)]. In response, themicrogel deswells until a new equilibrium
with the contractile polymer gel pressure contribution Πg is estab-
lished at a smaller equilibrium radius. The enhanced counterion
permeation of microgels with increasing concentration is reflected
in the lowering of the net microgel valence Znet, defined in Eq. (19),
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FIG. 1. PBCM predictions for radial profile of microion charge density ρel(r) in
units of 1/(a30 e) vs radial distance r from center of cell (units of dry radius a0)
for microgel valence Z = 500, dry radius a0 = 10 nm, reservoir salt concentration
cres = nres/NA = 100 μM, and dry volume fractions ϕ0 = 0.03 and 0.005 (red and
black solid curves). Inset: Reduced coion number density n−(r)a30 (dotted-dashed

curves). All curves terminate at the cell radius r = R = a0/ϕ
1/3
0 . Vertical line

segments indicate equilibrium swelling ratio, α = a/a0, computed from zero balance
of intraparticle pressure contributions in Eqs. (34) and (37).

which for the backbone valence Z = 500 is given by Znet = 223
at ϕ0 = 0.005 and by Znet = 154 at ϕ0 = 0.03. The counterion-
induced deswelling becomes weaker with increasing salt concentra-
tion, which causes a flattening of themicroion concentration profiles
across the microgel surface.

In the PBCM method, the mean salt concentration ns in the
suspension is obtained by integrating the coion concentration pro-
file over the cell volume according to Eq. (39). In the TPT method,
ns is computed using the equality of the chemical potentials of the
microions in the suspension and reservoir. In Donnan equilibrium,
ns is a state-dependent quantity. The TPT and PBCMpredictions for
the concentration dependence of ns are depicted in Fig. 2 (red and
black curves, respectively), for reservoir microion concentration cres
= 100 μM and backbone valences Z = 100, 200, and 500. The mono-
tonic decrease in ns with increasing ϕ0, and hence with increasing
number of backbone-released counterions, is due to an increasing
expulsion of salt ion pairs into the reservoir, necessitated tomaintain
global electroneutrality in the suspension.

At high dilution, ϕ0 → 0, where the concentration of salt
counterions greatly exceeds the concentration of backbone-released
counterions, the exact limit ns → nres is recovered by both meth-
ods. For the moderately high valences Z = 100 and Z = 200 con-
sidered here, the TPT and PBCM curves for ns(ϕ0) in Fig. 2 lie
close to each other, but with a slightly stronger salt expulsion pre-
dicted in the PBCM. Pronounced differences are observed for the
high valence Z = 500 and intermediate ϕ0, where the concentra-
tion, Zn, of backbone-released counterions is comparable to the
salt-counterion concentration. While the PBCM predicts a decreas-
ing ns with increasing Z, in accord with physical expectation, this
trend is reversed for ϕ0 ≲ 0.005 by the TPT curve for Z = 500. We
attribute this reversal to the disregard in the linear TPT of nonlinear

FIG. 2. Reduced suspension salt concentration nsa
3
0 vs microgel concentration

ϕ0. Inset: Reduced Debye screening constant κa0. TPT predictions are in red, and
PBCM predictions in black for backbone valence Z = 100 (dotted), 200 (solid), and
500 (dotted-dashed). Reservoir salt concentration is cres = nres/NA = 100 μM.

electrostatic effects, which come into play at high valences and low
ϕ0. The PBCM accounts for nonlinear electrostatic effects but not for
intermicrogel correlations, which the TPT accounts for on a linear
level.

The inset of Fig. 2 displays TPT and PBCM predictions for the
Debye screening constant κ in Eq. (20), which on the scale of the
inset are practically equal. In the dimensionless form, the screening
constant is

(κa0)2 = (κca0)2 + (κsa0)2 = 3ϕ0 ZλB
a0

+ 8πλBnsa
2
0. (54)

The first term on the right-hand side is the contribution by the
backbone-released counterions (subscript c). The second term, pro-
portional to ns, is the salt-ion contribution (subscript s). This split-
ting of κ2 into released-counterion and salt-ion contributions allows
us to identify the counterion-dominated regime by the condition
κc ≫ κs and the salt-dominated regime by κc ≪ κs. At very low
microgel concentrations, i.e., in the salt-dominated regime where
κ ≈ κs, the TPT and PBCM predictions for κ differ due to dif-
fering values for ns. However, these differences are not visible in
the inset. At higher concentrations in the counterion-dominated
regime where κ ≈ κc, both methods predict practically the same
κ ≈ κc, determined by Z and ϕ0. With increasing backbone valence,
κc increases, while κs decreases, owing to increased salt expul-
sion. The total screening constant κ increases monotonically with
increasing concentration, more steeply so for higher Z.

Figure 3 shows the electrostatic coupling strength Γel as a func-
tion of ϕ0. Note that Γel depends on the equilibrium radius a and
net microgel valence Znet, both of which are monotonically decreas-
ing with increasing ϕ0. The decrease in Znet due to inside-permeated
counterions is more pronounced than the decrease in awith increas-
ing concentration, which explains the monotonic decrease in Γel.
The overall behavior of the coupling strength as a function of
concentration and backbone valence is similar in the TPT and
PBCM, but the TPT consistently predicts a stronger electrostatic
coupling than PBCM. The greatest differences are visible for low
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FIG. 3. Electrostatic coupling parameter Γel = ZnetλB/a vs microgel concentra-
tion ϕ0, where Znet is the net microgel valence. System parameters, colors, and
linetypes are the same as in Fig. 2.

concentrations and for the highest considered backbone valence
Z = 500, where Γel > 5, such that nonlinear electrostatic effects, not
accounted for in the linear TPT, come into play.38,52,53 We stress
here that, in contrast to suspensions of impermeable, solid parti-
cles, a reduction in the concentration of permeable, compressible
particles results in a strengthening of the electrostatic interparticle
repulsion.

Figure 4 depicts the concentration dependence of the equilib-
rium microgel swelling ratio, α = a/a0, for three different backbone
valences. At a given ϕ0, the swelling ratio increases with increasing Z,
owing to an enhanced electrostatic repulsion between the Z mono-
valently charged backbone sites for a constant reservoir salt con-
centration cres = 100 μM. Deswelling in the counterion-dominated

FIG. 4. Swelling ratio α = a/a0 vs reduced concentration ϕ0 for backbone valence
Z = 500 (dotted-dashed), 200 (solid), and 100 (dotted) at cres = 100 μM. Inset:

Swollen microgel volume fraction ϕ = ϕ0 α3 vs ϕ0. The straight dashed line

in the inset depicts ϕ = ϕ0 α(ϕ∗0 )
3

for a fixed TPT microgel radius taken at

ϕ∗0 = 2.0 × 10−4 and backbone valence Z = 500. Other system parameters are
the same as in Fig. 2.

regime displayed in the figure is most pronounced at smaller ϕ0,
and a decreases here more strongly for higher Z. For Z = 500, the
TPT predicts distinctly higher swelling ratios than the PBCM and a
distinctly steeper decay of α with increasing ϕ0.

An important quantity characterizing the swollen microgels is
the volume fraction ϕ = ϕ0 α

3, whose concentration dependence is
shown in the inset for Z = 500. Due to deswelling, ϕ increases sub-
linearly with increasing ϕ0. Differences between the TPT and PBCM
predictions for ϕ are small except for small concentrations, where
nonlinear electrostatic coupling is significant.

To assess quantitatively the effect of deswelling on structural
and dynamic properties, it is useful to compare findings for the
actual suspension of deswelling microgels with those for a fictitious
reference suspension of nonswelling particles. We select the system
parameters of the reference system to be the same as in the actual
one, except for the microgel radius aref, which is fixed to the equi-
librium value of the deswelling system at the lowest considered con-

centration, ϕref0 , where nonlinear screening by the microions can still

be disregarded. Explicitly, we set aref = a(ϕref0 ) using ϕref0 = 0.005, a
reservoir concentration fixed to cres = 100 μMand backbone valences
restricted to values Z ≤ 200.

Figure 5 shows the swelling ratio α predicted by the two meth-
ods, compared with the respective constant value α(ϕ0 = 0.005)
(dashed horizontal lines) for the reference system. Note that the
reference system microgel radius is different for the two methods,
namely, aref ≈ 24.1 nm in the TPT and aref ≈ 23.8 nm in the PBCM.
The transition from salt-ion to counterion domination occurs at
very small concentrations, resolved in the inset of Fig. 5. The ver-
tical line segments mark here the microgel concentration where Zn
= 2ns and hence κc = κs. At very small concentrations where κc < κs,
α changes only little with concentration.

It was shown in Refs. 36 and 52–56 that nonlinear electrostatic
coupling, which comes into play for Γel ≳ 5, can be incorporated
into linear Yukawa-type effective pair potentials, such as in Eq. (17),
by using renormalized values of the particle (backbone) charge and
of the Debye screening constant. Different renormalization schemes

FIG. 5. Predictions of TPT and PBCM for swelling ratio α = a/a0 vs microgel con-
centration ϕ0 compared with corresponding reference system fixed value (dashed
lines). Inset: swelling ratio α for low concentrations where salt-dominated regime
is resolved. System parameters: Z = 200 and cres = 100 μM.
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were developed for this purpose for charge-stabilized suspensions
of impermeable particles,36,52–56 but considerably less applications to
ionic microgels were reported so far.5,8,51,57,58

In the remainder of this paper, we study fluid-phase suspen-
sions mostly for conditions Γel < 5 where the TPT and PBCM can
be directly compared without the need to invoke microgel charge
renormalization. For higher Znet, this condition limits us to con-

centrations ϕ0 > ϕref0 = 0.005 in the counterion-dominated regime
where deswelling is most pronounced.

B. Potential parameters and pressure contributions

Having introduced the reference system of constant-sizemicro-
gels, we analyze next the parameters characterizing the effective pair
potential of deswelling microgels, in comparison with the reference
system values. For the considered system parameters, the likeli-
hood of particle overlap is small. The microgel interaction is thus
determined by the nonoverlapping (Yukawa) part of the effective
pair potential, uY(r; n), in Eq. (17). The Yukawa potential, which is
characterized by Znet and κ, can be expressed in the form

βuY(r;n) = 2a0AY
e−κr

r
, (55)

where AY = βuY(2a0; n) exp(2κa0) is an interaction strength param-
eter.

In Fig. 6, the concentration dependence of the net microgel
valence Znet and the Debye screening constant κ of deswelling parti-
cles are compared with the reference system predictions. While Znet

decreases with increasing concentration, κmonotonically increases.
This trend can be attributed to the associated increase in the num-
ber of counterions inside themicrogels. Deswelling slightly increases
Znet but has almost no effect on κ, which in the counterion-
dominated regime is determined solely by Z and ϕ0, independent
of ns [see Eq. (20)]. At low ϕ0, the Znet curves merge with those
of the reference system since aref becomes at ϕ0 = 0.005 equal to
the radius a of the deswelling microgels. Deswelling enlarges the

FIG. 6. Concentration dependence of net microgel valence Znet. Inset: reduced
Debye screening constant vs ϕ0. Predictions of TPT and PBCM for deswelling
systems (solid red and black lines, respectively) are compared with constant-size
reference system predictions (dashed lines). System parameters: Z = 200 and
cres = 100 μM.

volume available to the microions outside the microgels by a factor

V(ϕref − ϕ), where ϕref = ϕ0(aref/a0)3 is the volume fraction of the
reference system. The resulting gain in entropy for counterions leav-
ing the deswelling microgels is nearly compensated by the greater
work required to expel these ions as the backbone charge density of

the opposite sign is increased by a factor (aref/a)3. The net effect is
an only slightly increased Znet for the deswelling microgel system.
Both TPT and PBCM predict such a slight enhancement of Znet at
higher ϕ0, but with consistently higher values for TPT.

As shown in Figs. 7(a) and 7(b), AY grows with increas-
ing concentration while βuY(2a) decreases. The order relation

Znet(ϕ0) ≥ Zref
net(ϕ0) is valid, which implies the order relation

βuY(2a) ≥ βurefY (2a) for the effective potential at contact dis-

tance 2a. The opposite order AY ≤ Aref
Y holds for the interaction

parameter AY in Eq. (55). To understand these relations, recall with
Eq. (18) that AY is proportional, in addition to Z2

net, to a geomet-
ric factor depending on κa, and this factor is higher for the ref-
erence system. Figure 7(b) quantifies the aforementioned peculiar-
ity of ionic microgel systems that, with decreasing concentration,
the electrostatic coupling strength measured at contact distance is
increased.

Having assessed how the effective pair potential is affected by
deswelling, we address next various pressure contributions. Figure 8
displays PBCM results for the microion pressure pμ, calculated using
the contact theorem in Eq. (38). As expected, for given ϕ0, pμ grows
rapidly with increasing backbone valence. For Z = 200, the microion
pressure of the reference system slightly exceeds the pressure for
deswelling particles, essentially due to the higher volume fraction,
ϕref > ϕ, of the reference system.

It is instructive to compare the PB cell model pressure pμ with
the total suspension pressure p from TPT and the volume energy-
derived contribution pV. Such a comparison is shown in Fig. 9 for
a system with Z = 200 and cres = 100 μM. All pressures are mea-
sured relative to the reservoir osmotic pressure pres. Here, pμ is
calculated according to Eq. (38) using the PBCM microion concen-
trations n±(R) at the cell edge, p according to Eq. (31) with TPT

FIG. 7. Influence of deswelling on interaction strength parameters (a) AY

= βuY(2a; n) exp(2κa0) and (b) βuY(2a; n) of effective Yukawa pair potential for
nonoverlapping microgels, as predicted by TPT and PBCM. System parameters:
Z = 200 and cres = 100 μM.
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FIG. 8. PBCM prediction for microion osmotic pressure pμ − pres (in reduced units)
vs ϕ0 for backbone valences Z as indicated and reservoir pressure pres = 2nreskBT.
For Z = 200, microion osmotic pressure of the reference system is also shown (blue
dashed line). Other parameters are as in Fig. 2.

input for f (a, n) [Eq. (30)], and pV according to the linear-response
expression in Eq. (22). Also shown is the kinetic microion pressure
pkin = (Zn + 2ns)kBT, with ns calculated from TPT. In the dilute
limit (ϕ0 → 0), all pressure terms converge to pres, and the system
salt concentration ns tends to nres. The dry volume fraction at which
Zn = 2ns is ϕ0 ≈ 0.002. The displayed pressure curves hence represent
the counterion-dominated regime.

As seen from comparing p to pV, intermicrogel correlation
contributions to p are significant for ϕ0 ≳ 0.04, where p becomes
distinctly higher than pV. This comparison shows further that the
pressure contribution pse, generated by the concentration depen-
dence of a(n) in the single-particle energies ue(a) and f p(a) in
Eq. (28), is negligible at lower concentrations. The PBCM pressure

FIG. 9. Reduced pressure p of microgel suspension from TPT [Eqs. (30) and (31)],
volume energy contribution pV [Eq. (22)], and PBCM pressure pμ [Eq. (38)] vs
microgel concentration ϕ0. All pressures are relative to reservoir pressure pres.
System parameters are Z = 200 and cres = 100 μM. Also shown is the TPT predic-
tion for the kinetic (ideal gas) pressure, βpkin = Zn + 2ns, where ns is system salt
density (nearly identical to PBCM prediction).

pμ exceeds pV for nonzero concentrations and is overall close to p,
except at high ϕ0. At this relatively low salt concentration, the kinetic
microion pressure difference pkin − pres (dotted curve) is practically
equal to the reduced ideal gas pressure of counterions, ZnkBT (or
3Zϕ0 in reduced units), up to a small negative correction propor-
tional to 2(ns − nres), owing to the salt expulsion (Donnan) effect (cf.
Figure 2).While in the concentration range of Fig. 9, the counterions
contribute most strongly to the suspension osmotic pressure due to
the electrostatic attraction of the fixed backbone charge they behave
distinctly nonideal, which is reflected in the nonconstant, radially
decaying counterion concentration profile n+(r) (see Fig. 1). This is
why pkin is higher than p.

C. Structural properties and charge renormalization

As explained in Sec. IV, using ueff(r; n) with associated values
for the equilibrium radius a, net valence Znet, and screening constant
κ, one can calculate the microgel radial distribution function (RDF)
g(r) and static structure factor S(q) characterizing pair correlations
in real and Fourier space, respectively. For this purpose, we use the
Rogers-Young (RY) integral-equation scheme. This thermodynam-
ically self-consistent scheme is known, from the comparison with a
vast body of computer simulation results, to be overall very accu-
rate for the fluid-phase g(r) and S(q) of charge-stabilized particles
interacting via a repulsive Yukawa-type pair potential.40,59,60

To illustrate the accuracy of the RY method for microgel par-
ticles interacting via the pair potential in Eq. (16), in Fig. 10, the
RY results for g(r) and S(q) are compared with Monte Carlo (MC)
simulation data obtained using the method in Ref. 10 for a salt-free
suspension with Z = 100. The RY predictions are also compared
with results from the numerically faster but thermodynamically not
self-consistent, hypernetted chain (HNC) integral-equation scheme.
There is overall good agreement between the RY andMC data, while
the real-space pair correlations are underestimated by the HNC
scheme. For the considered specific system, however, the RY pre-
diction for the structure factor peak S(qm) shown in the inset is less
accurate than the HNC prediction.

FIG. 10. Results of RY, HNC, and MC for radial distribution function, g(r), and static
structure factor, S(q) (inset), of a salt-free suspension with ϕ0 = 0.01, Z = 100,
α = 2.327, and κa0 = 0.463. Swelling ratio α is computed using TPT. The length
unit is microgel diameter σ = 2a.
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Rogers-Young results for the concentration dependence of the
structure factor peak height S(qm) and the osmotic compressibility
factor S(0) (inset) are displayed in Fig. 11. The equilibrium radius a
in the potential ueff(r ; n), on which the RY calculations are based, is
determined here using the TPT and PBCM. The contact value, g(σ),
of the associated RDF remains small in the considered concentration
range, showing that the no-overlap potential, uY(r), essentially deter-
mines the microstructure of the microgels. The overlap potential,
uov(r) + uH(r) in Eq. (16), comes into play only at high concen-
trations. From comparison with the reference system peak height
predictions, one notes that S(qm) is reduced when deswelling is
accounted for, although only slightly, since for Z = 200, the decrease
in the microgel radius relative to the reference value remains small
even at higher concentrations (cf. Fig. 5).

For a given concentration, the TPT predicts a more structured
system than the PBCM as reflected by the higher values of S(qm).
This difference originates from the higher net charge and larger
microgel radius in the TPT as discussed already in relation to Figs. 3
and 4.

In discussing the Kirkwood-Buff relation [Eq. (10)], we noted
that, for a monodisperse suspension in osmotic equilibrium with
a salt reservoir, S(0) = S(q → 0) equals the osmotic compressibil-
ity factor. Rogers-Young predictions for the concentration depen-
dence of S(0) (inset of Fig. 11) show that deswelling slightly increases
the osmotic compressibility. The increase in S(0) predicted by both
methods follows from the reduced volume fraction of deswelling

particles, which is lower by the factor (a/aref)3 than that of the
reference system. In its effect on S(0), this reduction in volume
fraction overcompensates the small deswelling-induced increase in
Znet (see Fig. 6). The PBCM yields distinctly higher compressibili-
ties than the TPT since it predicts smaller equilibrium radii and net
charges.

The peak value of the structure factor, S(qm), can be used as
an indicator for the proximity of a fluid suspension to a freezing
transition. The frequently cited empirical Hansen-Verlet criterion,

FIG. 11. RY structure factor peak height, S(qm), and osmotic compressibility factor,
S(q→ 0) (inset), vs ϕ0 for Z = 200 and cres = 100 μM. Results are presented for
deswelling microgels with radius a computed in TPT and PBCM and compared with
corresponding results for the reference system (dashed curves). Other parameters
as in Fig. 5.

S(qm) = 2.85, applies only to the freezing of a hard-sphere fluid. It
does not apply to suspensions with longer-range, soft inter-particle
repulsion. As shown in detail in Ref. 60, a somewhat higher freezing
indicator value, S(qm) = 3.1, should be used for suspensions with
long-range Yukawa-type repulsion, where overlap configurations
are unlikely. An alternative indicator of freezing in these systems,
applicable for very low salinity only, where κn−1/3 ≲ 7 and freezing
into a bcc lattice takes place, is the value g(rm) ≈ 2.6 for the principal
RDF peak height at radial distance rm.

60

To illustrate how the freezing transition concentration is deter-
mined using the citerion S(qm) = 3.1, we consider a strongly charged
microgel suspension with Z = 500 and cres = 50 μM, for which
g(2a) ≈ 0 holds to excellent accuracy up to the freezing transition
concentration. For such a strongly coupled system, it is necessary
to renormalize the (net) microgel charge and suspension screening
constant, so as to incorporate nonlinear response of the microions
to the strong electric field of the microgel backbone. To determine
these renormalized parameters in the framework of the PBCM, we
follow Colla et al.8 in linearizing the PB equation [Eq. (33)] around
the nonlinear potential value ΦR = Φ(R) at the cell boundary. This
procedure leads to a linear PB equation,

ΔΦl(r) = κ2eff[Φl(r) −ΦR + γR] + 3λBZ
ren

a3
Θ(a − r), (56)

for r ≤ R, where κ2eff = κ2res cosh(ΦR), and γR = tanh(ΦR), with the
latter quantity being negative due to the negative backbone charge.
Here, Zren is the yet unknown renormalized backbone valence, and
Θ(r) is the unit step function.

The unique solution for the linearized potential, Φl(r), inside
and outside the microgel sphere can be obtained analytically using
the boundary conditions Φl(R) = ΦR, Φ

′

l(R) = 0, and Φ
′

l(0) = 0,
in conjunction with the continuity of Φl(r) and its first derivative
at r = a. These five conditions determine Zren, together with the
four integration constants arising from the integration of the lin-
earized PB equation [Eq. (56)] inside and outside a microgel sphere.
Input parameters are here ΦR and the equilibrium radius a, deter-
mined independently. Note that the linearized potential Φl(r) gives
rise to the same potential and electric field values at the cell bound-
ary as the nonlinear PBCM potential. We refrain from quoting the
somewhat lengthy analytic expressions for Φl(r) and Zren given in
Ref. 8. As discussed in Ref. 8 (see also Ref. 61), due to the mono-
tonic increase in the microgel radius with increasing bare back-
bone valence Z, the renormalized valence Zren ≤ Z does not reach
a saturation value beyond the linear regime, as it does for nonper-
meable rigid colloids.62,63 Instead, Zren grows monotonically with
increasing Z, showing only a slight indication of a plateau behav-
ior in the regime of intermediately high Z and low suspension
salinity.

In the Donnan equilibrium, the renormalized net microgel
charge number, Zren

net , is obtained in the PBCM as

Z
ren
net = −a

2
Φ
′

l(a)
λB

= tanh(ΦR)
κeffλB

[κeff(a−R) cosh(κeff(a−R))
+ (κ2effaR−1) sinh(κeff(a−R))], (57)
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which follows alternatively from Eq. (19), wherein Z and n±(r)
on the right-hand side are replaced, respectively, by Zren and the
linearized microion profiles,

nl,±(r) = nrese∓ΦR[1 ∓ (Φl(r) −ΦR)], (58)

whose values at the cell boundary match the nonlinearized ones.
To implicitly account for nonlinear effects, we use Zren

net given by
Eq. (57) as the input for the net valence in the linear-response, no-
overlap Yukawa potential uY(r) in Eq. (17). In addition, κeff might
be identified as the renormalized input for the screening constant in
uY(r), as done based on the original description by Alexander et al.62

for the case of nonpermeable rigid spheres.56,63 However, to recover
the PBCM screening constant in Eq. (40) in the limiting case of low
backbone charges, where charge renormalization is not operative,
we determine the renormalized screening constant, κren, to be sub-
stituted into ueff(r), in a manner that maintains the smoothness of
the effective potential at r = a for the nonlinear case. Explicitly, we
determine κren as

(κren)2 = 4πλB(nZren
app + 2nrens ), (59)

where

n
ren
s = 4π

VR
∫ R

0
nl,-(r)r2 dr. (60)

The apparent renormalized backbone valence, Zren
app, is defined by

Eq. (41) using the substitutions Z∗ → Zren
app, κ

∗
→ κren, and Z∗net

→ Zren
net . Note that κ

ren is given here only implicitly so that an iter-
ation procedure with starting seed κeff is used for its calculation. For
κeff, we obtain the expression

(κeff)2 = 4πλB
1 − γR

[nZren +
2nrens

1 + γR
], (61)

identical to the one for nonpermeable charged colloids.63 The
screening constants κeff, κ

ren, and κ mutually differ, except in the
limit Z → 0, where γR → 0 and {ns,nrens } → nres, in which
case all three quantities are then equal the reservoir screening
constant, κres.

Rogers-Young results for the concentration dependence of
S(qm) of strongly charged microgels are displayed in Fig. 12. The
effective pair potential parameters are determined here using the
PBCM charge-renormalization method described above. The inset
shows the size ratio a(ϕ0)/aref with aref = a(ϕ0 = 0.005) as pre-
dicted by the nonlinear PBCM method. The RY values for g(2a)
are practically zero (i.e., g(2a) < 0.001) for all considered ϕ0 so that
S(qm) = 3.1 qualifies as a freezing indicator. Figure 12 illustrates that,
for strongly charged microgels, deswelling significantly increases the
freezing transition concentration by about 16%, corresponding to a
4% decrease in the swelling ratio α (see inset).

For deswelling microgels, the freezing transition concentration
determined by S(qm) = 3.1 is ϕ0 ≈ 0.01. The RY RDF peak height
is here g(rm) = 2.7, which is close to the freezing transition value
2.6 holding for suspensions of colloids interacting by a repulsive
hard-core-Yukawa pair potential, whose state points in the phase
diagram are located on the fluid-bcc part of the freezing transition
line, characterized by κcolln

−1/3
≲ 7.60 If we identify κcoll by κ

ren, where

FIG. 12. RY peak height, S(qm), for strongly repelling microgels with Z = 500 and
cres = 50 μM. Results are presented for deswelling (solid curve) and reference sys-
tem constant-size microgels (dashed curve), based on the charge-renormalized
PBCM. The dotted horizontal line marks the freezing criterion value S(qm) = 3.1.
Inset: swelling ratio α = a/a0 in charge-renormalized PBCM.

(κren)2 = 4πλBnZren
app for the present counterion-dominated microgel

system, we obtain κcolln
−1/3 ≈ 6.3, consistent with a fluid-bcc freezing

transition quite close to the fluid-bcc-fcc triple point.60

D. Diffusion and rheological properties

We explore next dynamic properties of ionic microgel suspen-
sions, using the one-component model of pseudo-microgels inter-
acting via ueff(r; n). The deswelling ratio α(ϕ0), net valence Znet(ϕ0),
and Debye screening constant κ(ϕ0) in this model are determined
using the TPT and PBCMmethods. As explained in Subsection V B,
the employed methods for calculating dynamic properties depend
on ueff(r; n) only implicitly via the radial distribution function g(r)
and static structure factor S(q). On taking into account that solvent
permeability effects are very small for nonoverlapping ionic micro-
gels,4,42 we identify the hydrodynamic microgel radius aH with the
equilibrium radius a(ϕ0).

Figure 13(a) displays our results for the positive definite hydro-
dynamic functionH(q) at concentration ϕ0 = 0.005, calculated using
the BM-PA hybrid scheme described in Subsection V B, which
requires S(q) as the only input. This input is calculated using the
RY scheme, which gives somewhat different results in the TPT and
PBCM, respectively, owing to their different predictions for a and
Znet. For example, at ϕ0 = 0.005, we find ϕ = 0.067 in the PBCM
and ϕ = 0.073 in the TPT. The differences in S(q) cause less pro-
nounced differences in H(q) since the latter depends on S(q) only
in a global (functional) way.42,49 The differences in H(q) are great-
est at the peak, which is located at practically the same wavenumber
qm as the principal peak of S(q). There are pronounced undulations
in H(q) due to strong HIs between the microgels. In the absence of
HIs,H(q) = 1 independent of q. The peak heightH(qm) exceeds unity
for ϕ0 = 0.005, a feature characteristic also of charge-stabilized sus-
pensions at low salinity and low volume fractions ϕ, where the hard
core of the colloidal particles is masked by the strong and long-range
electrostatic repulsion.40,64
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FIG. 13. (a) BM-PA results for the hydrodynamic function H(q) as a function of
reduced wavenumber, qσ, for two concentrations ϕ0 as indicated. The lower one,
ϕ0 ≈ 0.005, is the concentration where the collective diffusion coefficient attains its
maximum. At ϕ0 = 0.02, the H(q) of deswelling particles with TPT calculated radius
is compared with that of the reference system. (b) Concentration dependence of
sedimentation coefficient K = H(q → 0). Solid curves: deswelling particles in the
TPT (red) and PBCM (black). System parameters: Z = 200 and cres = 100 μM.

Also displayed in Fig. 13(a) is the hydrodynamic function (with
TPT input for a) of a more concentrated suspension at ϕ0 = 0.02,
which corresponds in the TPT to the volume fraction ϕ = 0.26.
The principal peak of H(q) is here significantly below 1. The
reduced short-time self-diffusion coefficient, ds/d0(a) = H(qσ ≫ 1),
is accordingly significantly lower than its value for ϕ0 = 0.005,
which can be attributed to the enhanced hydrodynamic hindrance
of self-diffusion for higher concentrations [cf. Eq. (46)].

The differences in theH(q)’s of deswelling and referencemicro-
gels [solid and dashed curves, respectively, in Figs. 13(a) and 13(b)]
are small and basically due to the higher volume fraction of the ref-
erence system. This is also the reason for the slight downshift of the
reference-system H(q) relative to the one of the deswelling system.
The microgel H(q) bears a qualitative similarity to the one of col-
loidal hard spheres (HS) at the same volume fraction ϕ = 0.26, in
particular, regarding its peak value and location. The hydrodynamic

function of hard spheres, Hhs(q), is likewise characterized by a peak
height below one, and the peak is located at qmσ ≈ 2π. TPT based
explicit values are H(qm) = 0.81 (0.65) for the peak height, ds/d0
= 0.52 (0.51) for the short-time self-diffusion coefficient, and
K = H(q→ 0) = 0.11 (0.18) for the sedimentation coefficient, where
given in brackets are the respective values for colloidal hard spheres,
obtained using the analytic expressions42,43

H
hs(qm) = 1 − ϕ/ϕcp = 1 − 1.35ϕ
d
hs
s /d0 = 1 − 1.8315ϕ(1 + 0.12ϕ − 0.70ϕ2)

(62)
K

hs = 1 − 6.5464ϕ(1 − 3.348ϕ + 7.426ϕ2

− 10.034ϕ3 + 5.882ϕ4)
g
hs(rm = 2a+) = 1 − 0.5ϕ

(1 − ϕ)3 ,

which are accurate for volume fractions up to the hard-sphere freez-
ing transition value ϕ = 0.494. Note the strictly linear decline of

Hhs(qm) with increasing volume fraction, which holds to high accu-
racy for the complete liquid-phase concentration range. In the above

expression for Hhs(qm), ϕcp = π/(3√2) ≈ 0.74 is the highest pos-
sible volume fraction, attained for monodisperse hard spheres in
close-packed fcc and hcp crystalline structures.

Equation (62) quotes also the accurate Carnahan-Starling

expression for the height, ghs(2a+), of the principal peak of the hard-
sphere RDF, located at the contact distance rm = 2a+. The BM-PA
values ofH(q) at q = qm and in the q→∞ limit are somewhat higher
than the corresponding hard-sphere values. There are also differ-

ences between the microgel g(r) and the hard-sphere ghs(r) (not
shown here). The microgel RDF for ϕ0 = 0.02 has the peak height

g(rm) = 2.50 at pair distance rm = 1.32σ, whereas ghs(σ+) = 2.15.
The differences from the hard-sphere values are due to the electro-
static repulsion between themicrogels, which is here of shorter range
1/κ = 0.4a. The pair potential contact value, βuY(2a) ≈ 18, is still
significantly higher, however, than the thermal energy kBT [see
Fig. 7(b)], reflected in a nearly zero probability, g(2a) < 10−3, of
finding two microgels in contact.

Owing to HIs, two microparticles in contact sediment faster
than at larger separations. This underlies the fact that the sedimen-
tation coefficient K for a homogeneous ionic microgel suspension is
lower than the one for hard spheres at the same ϕ. The monotonic
decline of K = Vsed/V0

sed with increasing concentration is shown
in Fig. 13(b). Owing to stronger solvent backflow, the sedimenta-
tion velocity, Vsed(ϕ), is lower in a more concentrated suspension
than in a less concentrated one. The maximal sedimentation veloc-
ity, Vsed(ϕ = 0) = V0

sed, is thus attained at infinite dilution, where
K = 1. Since the major effect of deswelling is to lower ϕ, K is higher
for deswelling microgels than for the constant-size reference par-
ticles, and this explains also the slightly higher values of K in the
PBCM since aPBCM < aTPT.

As seen in Fig. 14(a), H(qm) of ionic microgels has a non-
monotonic volume fraction dependence. Starting from a value of
one at infinite dilution, with increasing ϕ, H(qm) increases toward
its maximal value ∼1.2 at ϕ ≈ 0.07 corresponding to ϕ0 ≈ 0.005
but thereafter declines monotonically, reaching values below one
for ϕ ≳ 0.2. This behavior should be contrasted with the strictly
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FIG. 14. BM-PA results for (a) hydrodynamic function peak height, H(qm), and
(b) reduced cage diffusion coefficient, D(qm)/d0(n), as functions of volume fraction
ϕ = ϕ0 α(n)3 using TPT (solid red curve) and PBCM (sold black curve) for α(n) and
compared with hard-sphere results (dashed curves). System parameters: Z = 200
and cres = 100 μM.

linear decrease in H(qm) for hard spheres (curved, dashed line
on the lin-log scale). In contrast to the nonmonotonic H(qm),
both K and ds/d0 (latter not shown here) decrease monotonically
with increasing ϕ. Furthermore, unlike the swollen radius a, which
decreases with increasing ϕ0, the reduced Debye screening constant
κa increases monotonically from κa ≈ 1.24 at ϕ0 = 0.005 to κa ≈ 3.4
at ϕ0 = 0.05.

For rigid charged particles interacting via a repulsive Yukawa-

type potential, the order relations H(qm; ϕ) > Hhs(qm; ϕ), ds(ϕ)> dhss (ϕ), and K(ϕ) < Khs(ϕ) were previously demonstrated.65,66

These relations hold also for ionic microgels, provided that particle
overlap is very unlikely, i.e., provided g(2a) ≈ 0.

For conditions not encountered in this paper, where overlap
of microgels is likely and their softness matters, such as for low Z
or high salt content, the expected effect on H(q) is a flattening of
its oscillations at larger q, possibly to an extent that H(qm) ≈ ds/d0.
Moreover, particle softness tends to enhance K, while H(qm) is low-
ered. This behavior of H(q) is observed indeed in a model system
of particles interacting by the Hertz potential.42 Softness effects in
nonionic and weakly charged microgel systems will be the subject of
a forthcoming study.

The short-time diffusion function, D(q), measured in units of
d0(n), is determined according to Eq. (47) by the ratio of the hydro-
dynamic factor H(q) and S(q), the latter being independent of HIs.
The principal minimum of D(q) is located, for repulsive interac-
tions, at practically the same wavenumber qm at which S(q) andH(q)
attain their respective maxima, with S(qm) being, in general, dis-
tinctly higher than H(qm). The so-called cage diffusion coefficient,
D(qm), quantifies the slow relaxation of concentration fluctuations
of a wavelength 2π/qm comparable with the diameter of the dynamic
cage formed around each particle by its neighbors. For hard spheres,
D(qm)/d0 decreases monotonically with increasing ϕ, which reflects
a dynamical stiffening of the next-neighbor cage. The cage diffusion
coefficient of hard spheres is quantitatively described, within 2% of
accuracy up to the freezing volume fraction, by the polynomial

Dhs(qm)
d0

= 1 − 2ϕ − 0.566ϕ2 + 2ϕ3, (63)

according to which Dhs(qm) follows closely a linear decline with
slope −2 for volume fractions up to ϕ ∼ 0.3. At freezing, where

Hhs(qm) ≈ 0.33 and Shs(qm) ≈ 2.85, Dhs(qm) ≈ 0.12 × d0.
The cage diffusion coefficient of ionic microgels is plotted

in Fig. 14(b) as a function of ϕ, where D(qm) is normalized by
the concentration-dependent single-microgel diffusion coefficient
d0(n), allowing direct comparison with the reduced cage diffusion
coefficient of hard spheres [Eq. (63)]. Unlike H(qm), the reduced
cage diffusion coefficient monotonically decreases with increasing ϕ.
The only remnant of the peak in H(qm) is a shallow inflection point
in D(qm)/d0(n) at ϕ ≈ 0.07. Owing to the electrostatic repulsion,
the next-neighbor cage of microgels is more structured than that of
hard spheres at the same ϕ, reflected in an accordingly higher struc-
ture factor peak and lower cage diffusion coefficient. The distinctly
higher values of S(qm) in the TPT, in comparison with the PBCM,
lead to lower values of D(qm)/d0(n) in the TPT, which explains the
reverse order in the curves of H(qm) and D(qm)/d0(n) in Figs. 14(a)
and 14(b), respectively.

While D(q) is minimal at qm, it attains its maximum at q = 0
where, according to Eq. (47), it has the physical meaning of a collec-
tive diffusion coefficient, denoted as dc = D(q → 0). The maximum
reflects the fast relaxation of long-wavelength concentration fluctu-
ations by a collective diffusive motion of particles. In this context,
recall that H(q) and S(q) are both minimal at q = 0. At a given ϕ0,
however, S(0) appearing in the denominator of dc = d0(n)K/S(0) is
clearly below K = H(0), as noted from Figs. 11 and 13(b), with a
consequentially high value of dc.

Figure 15 displays dc for deswelling ionic microgels, obtained
using the BM-PA method with respective TPT and PBCM input for
a. To uncover its genuine concentration dependence, dc is divided,

FIG. 15. BM-PA results for the reduced collective diffusion coefficient of deswelling

microgels dc/ddry
0 vs ϕ0 (solid curves) for swollen radius a calculated using TPT

(red) and PBCM (black). Dotted curves are results without HIs where H(0) = 1.
Vertical line segments mark concentrations at which κc = κs [cf. Eq. (54)]. Sys-
tem parameters: Z = 200 and cres = 100 μM. Inset: comparison with reference
system results (dashed lines) for concentrations exceeding peak position value
ϕ0 ≈ 0.005.
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in lieu of d0(n), by the concentration independent single parti-

cle diffusion coefficient, d
dry
0 , of collapsed microgels, implying that

dc/ddry0 → a0/a for ϕ0 → 0.
Akin to low-salinity suspensions of impermeable charge-

stabilized particles, a nonmonotonic concentration dependence of
dc is observed, with a pronounced maximum of dc at ϕ0 ≈ 0.005, i.e.,
at the same concentration where H(qm) is greatest. The nonmono-
tonic concentration dependence of dc is explained on noting first
that K and S(0) are both monotonically decreasing with increasing
ϕ0. At low ϕ0, the decrease in S(0) with increasing ϕ0 is stronger than
that of K, giving rise to a growing dc. At higher concentrations, the
slowing influence of HIs on K is strong enough that the increase in
dc is turned into a monotonic decline. To show explicitly that the
maximum of dc and its decline at higher ϕ0 are due to HIs, results
for dc without HIs are included in the figure for comparison. With-
out HIs, K = 1 holds independent of concentration. The curves for
dc(ϕ0) without HIs are monotonically increasing, and they converge
to the ones with HIs at very low concentrations only. It is further
noted that the higher values of dc in the TPT are due to the lower
osmotic compressibility values predicted by this method, and this,
even though d0(n) ∝ 1/a in the TPT, is lower than in the PBCM.
Quite interestingly, the concentration in Fig. 15 where the number
of backbone-released counterions equals the number of salt coun-
terions marks an inflection point, where the shape of the curve of
dc(ϕ0) changes from convex to concave.

The influence of deswelling on dc at higher ϕ0 is assessed in
the inset of Fig. 15, in comparison with the reference system pre-
dictions (dashed lines). Deswelling slightly enhances collective dif-
fusion, as predicted by both the TPT and the PBCM. This enhance-
ment can be attributed to weaker HIs between deswelling microgels,
with a corresponding increase in K overcompensating the
increase in S(0).

A short discussion is in order regarding the BM-PA scheme
results for H(q) at wavenumbers q ≪ qm, where its accuracy is
known to worsen with increasing concentration, up to a degree
where nonphysical negative values for K are predicted.49,65 This
is mainly due to the self-diffusion contribution to H(q) = Hd(q)
+ ds/d0, which in the hybrid scheme is calculated using the pairwise
additivity (PA) approximation. The PA method fully accounts for
two-body HIs but neglects three-body and higher-order contribu-
tions. These complicated higher-order contributions account for the
reduction in the strength of the HIs between two particles due to a
hydrodynamic shielding by intervening particles. The disregard of
this hydrodynamic shielding effect by the PA scheme leads at higher
concentrations to an underestimation of ds. The latter contributes
to H(q) most significantly at q = 0 where the distinct part, Hd(0), is
negative. For this reason, we show BM-PA results for K = H(0) and
dc ∝ K for concentrations up to ϕ0 = 0.02 only where the small-q
BM-PA predictions are trustworthy.

Having discussed (short-time) diffusion properties of ionic
microgel suspensions, we finally consider rheological properties,
namely, the high-frequency (short-time) viscosity η∞ and the zero-
frequency viscosity η introduced in Eqs. (50) and (51), respectively.
Our analysis is limited here to weakly sheared suspensions, where
nonlinear phenomena such as shear thinning and the buildup of
normal stress differences are negligible. Just as for the diffusion
properties, we identify the hydrodynamic particle radius with a.

As described in Subsection V B, η∞ is calculated using the mod-
ified Beenakker-Mazur (BM) expression in Eq. (52). The shear
stress relaxation contribution Δη in η = η∞ + Δη is calculated
using the simplified mode-coupling theory (MCT) expression in
Eq. (53). The only input to these methods is S(q), which is cal-
culated in RY approximation based on ueff(r; n), with a obtained
in the TPT and PBCM, respectively. HIs are incorporated into the
simplified MCT expression via H(q), determined using the BM-PA
method.

Figure 16 presents results for η∞ (in units of the solvent vis-
cosity η0) as a function of ϕ0. With increasing concentration, η∞
grows gradually to a value at ϕ0 = 0.03 only three times higher
than the solvent viscosity. Such a modest growth with increasing
concentration is a characteristic feature of η∞. In addition, η∞ is
known to be rather insensitive to the form of the pair potential39,49

and hence to changes in the equilibrium radius a as reflected in
the nearly coincident curves for η∞ with a obtained from the TPT
and PBCMmethods. At a given concentration, the reference micro-
gel suspension has a higher volume fraction than the deswelling
microgels system, which explains the mildly higher viscosity
values.

For comparison, we show the prediction for η∞ from the
polynomial expression,

η∞

η0
≈ 1 + 5

2
ϕ(1 + ϕ) + 7.9ϕ3, (64)

derived in Ref. 39. This expression is a good viscosity approximation
for dilute suspensions of strongly repelling charge-stabilized spheres
with prevailing two-body HIs and low values of S(0). As shown in
Fig. 16, Eq. (64) is in qualitative accord with the modified BM results
but underestimates η∞ at higher concentrations. Note that Eq. (64),
although not a virial expansion to third order in ϕ, reduces to the lin-
ear Einstein viscosity formula for very low volume fractions where

FIG. 16. Modified BM theory results for the reduced high-frequency viscosity,
η∞/η0, as a function of ϕ0, for interaction parameters and a calculated using TPT
and PBCM. Solid curves are for deswelling microgels, while dashed curves are
for the reference system. The dotted curve is the prediction by Eq. (64) using
ϕ = ϕ0α

3(ϕ0), with α(ϕ0) calculated in the PBCM. System parameters: Z = 200
and cres = 100 μM.
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FIG. 17. Reduced zero-frequency viscosity, η/η0, vs ϕ0 for system parameters
Z = 200 and cres = 100 μM. The viscosity contribution η∞ is calculated using mod-
ified BM theory, and the shear stress relaxation contribution Δη is calculated using
simplified MCT. Inset: comparison with the reference system viscosity (dashed
curves).

the particles are uncorrelated and, thus, Δη = 0. For the hypotheti-
cal case of vanishing HIs, the particles remain uncorrelated on short
time scales for all fluid-phase volume fractions. In this case, η∞/η0
= 1 + [η] ϕ holds for all ϕ, with [η] = 5/2 for no-slip spheres.

The reduced zero-frequency viscosity, η/η0, of deswelling
microgels is plotted in Fig. 17 (solid curves). The viscosity curves
terminate at the concentration where S(qm) ≈ 3, which is of different
values in PBCM and TPT, respectively. The pronounced increase in
η at higher ϕ0 is mainly due to the shear stress relaxation part Δη.
The latter is more sensitive to changes in the pair potential than in
η∞ as reflected in visibly higher values of η, for ϕ0 ≳ 0.03, when the
TPT radius input is used. The higher volume fractions of the refer-
ence system in comparison with the system of deswelling microgels
imply a lower zero-frequency viscosity for the deswelling particles,
visible in the inset at higher concentrations.

VII. CONCLUSIONS

We have presented a comprehensive theoretical study of the
influence of concentration on deswelling, thermodynamic, struc-
tural, and dynamic properties of suspensions of weakly cross-
linked, ionic microgels dispersed in a good solvent and in osmotic
equilibrium with an electrolyte reservoir. To calculate microion
density profiles, single-particle and bulk osmotic pressures, and
state-dependent, equilibrium microgel swelling ratios, we imple-
mented two mean-field methods and assessed their respective pros
and cons. We consistently combined these methods—a thermo-
dynamic perturbation theory and a Poisson-Boltzmann spherical
cell model—with calculations of the net microion valence Znet and
Debye screening constant κ, characterizing the electrostatic part
of the effective one-component microgel pair potential derived
from linear-response theory. On the basis of the effective one-
component model of microion-dressed microgels, we determined
static structural properties, including S(q) and g(r), by Monte Carlo

simulation and the self-consistent Rogers-Young integral-equation
method and used these properties as input to the calculation of
dynamic suspension properties, with the salient hydrodynamic
interactions included.

At salt concentrations high enough that salt ions contribute sig-
nificantly to electrostatic screening, the microion distribution inside
and outside the microgels is relatively uniform and counterion-
induced deswelling is consequently weak. Therefore, our study
focused on the counterion-dominated regime, with salt andmicrogel
concentrations low enough, andmicrogel valences high enough, that
deswelling is pronounced even without significant particle overlap.

The TPT method neglects nonlinear electrostatic effects but
accounts for intermicrogel correlations. In contrast, the PBCM
method accounts for nonlinear screening by mobile microions but
neglects intermicrogel correlations, except for the remnant concen-
tration dependence of the cell radius. Unlike impermeable surface-
charged colloidal particles, ionic microgels are characterized by elec-
trostatic interactions whose strength, as measured at mutual contact,
increases with decreasing microgel concentration. This property
restricts the applicability of the TPTmethod to nonvanishingmicro-
gel concentrations.

While both methods predict the same trends for the effec-
tive microgel pair potential, there are quantitative differences in
the swelling ratio, net valence, and the potential value at contact,
whose values are, in general, higher in the TPT than in the PBCM.
In the counterion-dominated regime, the range 1/κ of the electro-
static repulsion is equal in both methods. The greatest differences
in the pair potential parameters occur at very low concentrations
and high backbone valences, which can be partially attributed to
the linear-response approximation inherent in the TPT. The rela-
tive variation in the microgel radius with changing concentration is
less pronounced in the PBCM, in which nonlinear response confines
the counterions more strongly to the microgel interior.

Differences in predictions of the TPT and PBCM methods are
more pronounced for static (thermodynamic and structural) prop-
erties than for dynamic properties, which can be explained by the
fact that dynamic properties depend only globally (i.e., function-
ally) on S(q). The only exception is the collective diffusion coeffi-
cient dc, which is directly proportional to the inverse of the static
compressibility factor 1/S(0).

Owing to the dominance of the electrostatic interactions in
the considered microgel systems, their dynamic behavior resembles
that of charged-stabilized suspensions of impermeable solid parti-
cles. In particular, the peak, H(qm), of the hydrodynamic function
has a nonmonotonic concentration dependence, with a maximum
higher than one at an intermediate concentration value, reflected
in a concomitant inflection point of the cage diffusion coefficient.
The collective diffusion coefficient, dc, behaves likewise nonmono-
tonically and has its maximum at the same concentration as H(qm).
This maximum was shown to arise from the slowing effect of HIs,
which becomes more influential with increasing concentration. The
electric repulsion between the microgels distinctly enhances the
zero-frequency viscosity at higher concentrations, as compared to
suspensions of uncharged particles.

The comparison with corresponding results for the reference
system of constant-sized microgels revealed that the major influ-
ence of deswelling on structural and dynamic properties is via
the reduced volume fraction ϕ, which grows only sublinearly with
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increasing concentration n ∝ ϕ0. The effect of counterion-induced
deswelling on structural and dynamic properties is overall quite
weak, for valences where nonlinear electrostatic contributions to the
microion distributions are negligible, and changes of α = a(ϕ0)/a0
with concentration are accordingly small.

At higher concentrations, deswelling slightly enhances S(0) and
the hydrodynamic function H(q) for all wavenumbers q. Deswelling
reduces the zero- and high-frequency viscosity and slightly enhances
collective diffusion. From the behavior of dc = d0H(0)/S(0), one
notes that the deswelling-induced enhancement of d0 ∝ 1/a is
nearly counterbalanced by the accompanying de-enhancement of
H(0)/S(0).

The most pronounced effect of deswelling is to shift the freez-
ing (crystallization) transition to higher concentration values, as we
have determined from an empirical freezing rule for the static struc-
ture factor peak height. This concentration shift is more pronounced
for strongly charged microgels, in which case the nonlinear PBCM
method can still be used to determine the swelling ratio α. To deter-
mine the concentration shift, however, the PBCMmust be combined
with a charge renormalization procedure to determine renormalized
values of the microgel net valence and screening constant from a
linearized Poisson-Boltzmann equation in the cell model. The renor-
malized parameters are used in the linear-response pair potential
[Eq. (17)], where they summarily account for the enhanced accu-
mulation of counterions inside and close to the spherical backbone
region. We illustrated such a renormalization procedure using a lin-
earization of the nonlinear PB equation around the potential at the
cell boundary. While such a linearization is most commonly used in
renormalization schemes applied to nonpermeable and permeable
colloidal particles, it is not the only choice. There are sound reasons
to use instead a linearization around the mean (i.e., cell-volume-
averaged) electrostatic potential value.63,67 A proper assessment of
the pros and cons of different charge renormalization schemes, for-
mulated also in the framework of TPT, was not in the scope of the
present work but is the subject of a forthcoming paper.38

Finally, in the presented generic study, we considered only
uniformly cross-linked microgels, modeled by a uniformly dis-
tributed backbone charge. In future work, extensions to nonuni-
formly charged microgels can be explored where the backbone
charge is concentrated near the particle periphery. Such a nonuni-
form charge distribution is expected to significantly affect deswelling
and the strength of the effective pair potential, and, consequently,
also structural and dynamic properties.
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