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Abstract
Cross-flow filtration is a pressure-driven separation and enrichment process for colloidal dispersions where the feed dis-
persion is continuously pumped through a membrane pipe. The transmembrane pressure (TMP) causes the solvent to flow
out of the membrane, while the colloidal particles are retained inside the pipe. Consequently, a particles-enriched diffusive
layer is formed near the membrane wall which reduces the filtration efficiency. This so-called concentration-polarization
(CP) layer is determined by the balance of flow advection of particles towards, and gradient diffusion away from the mem-
brane. In the ultrafiltration regime where Brownian motion dominates flow convection, the collective diffusion coefficient
and the dispersion viscosity are key transport properties determining the CP layer, in conjunction with the TMP and trans-
membrane osmotic pressure. In this study, we present a new boundary layer method for the detailed flow and concentration
profiles which are compared with simulation results using the finite-element method (FEM) [1]. Results for the filtration
and flow efficiency are discussed for different dispersions including impermeable hard spheres (as a reference system),
solvent-permeable particles such as non-ionic microgels, and ionic microgels with concentration-dependent size. Further-
more, we generalize the FEM analysis to a segmented membrane with impermeable rings which we observe weakening of
the CP layer [2].
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1 Modeling of cross-flow ultrafiltration

1.1 Governing equations
We use the effective Stokes equation for suspension flow

∇P = η(φ)∇2v +∇η(φ) ·
(
∇v + (∇v)T

)
where v is dispersion-averaged velocity, P is the pressure, and η is
suspension viscosity depending on particle volume fraction φ.

In ultrafiltration, diffusion of particles is dominated by Brownian
motion, which leads to the advection-diffusion equation

∂φ

∂t
+ v · ∇φ = ∇ · (D(φ)∇φ)

where D is the (long-time) collective diffusion coefficient. In this
study, the transport properties η and D are given by models of im-
permeable and solvent-permeable hard spheres [3], and ionic micro-
gels [4, 5].
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Figure 1: Collective diffusion coefficient of hard spheres (green), solvent-
permeable hard spheres (blue), and ionic microgels (red), normalized by diffusion
coefficient D0. Lines are model predictions, and symbols are simulation results
for impermeable and solvent-permeable hard spheres[6].

1.2 Permeate flux
The solvent permeable flux is described by the integrated Darcy

law
vw(z) = Lp

(
P (z)− Pperm − Π(φw; z)

)
,

where Lp = 6.7 × 10−10m/(Pa sec) is the solvent permeability of
the membrane, Pperm = 1 atm is applied constant pressure, and
Π(φ) is the osmotic pressure described by the Carnahan-Starling
equation.

1.3 Operating conditions
Operating conditions are characterized by the longitudinal pressure

difference ∆LP = Pin − Pout and transmembrane pressure (TMP)
∆TP = (1/L)

∫ L
0 (P (z) − Pperm)dz. The reference conditions are

∆TP=5 kPa and ∆LP = 130 Pa.

1.4 Boundary conditions
- (center) Axisymmetry: v(r = 0, z) = 0

- (wall) Darcy’s law: v(r = R, z) = vw(z)

- (wall) No slip along z: u(r = R, z) = 0

- (wall) No particle flux: −r̂ · jφ(r = R, z) = 0

- (inlet) Particle: φ(r, z = 0) = φb

- (inlet and outlet) Pressure: P (r, z = 0) = Pin, P (r, z = L) = Pout

1.5 Finite element method (FEM)
- We use Comsol Multiphysics with laminar flow and transport of

dilute species packages, using a time-dependent solver for the
advection-diffusion equation

- P1/P1 elements for v and P , and P2 element for φ

- Meshes are stretched along z axis

2 Homogeneous membrane pipe

2.1 Pure solvent flow
An analytic solution is obtained using a zeroth-order regular per-

turbation expansion with ε = R/L = 10−3 and εRe� 1 [1].
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Figure 2: Analytic pressure distribution (lines), the corresponding FEM results
(open symbols), and the Navier-Stokes solution for steady-state (closed symbols)
pure solvent flow with ∆LP = 30, 55, 100, 1000, and 10000 (Pa) as indicated.

2.2 Reference suspension
We obtained a semi-analytic flow and concentration profiles by

matching the inner solution using singular perturbation expansion
with εδ = δ/R, to the outer solution for modified pure solvent flow.
We compare our new boundary layer analysis (mBLA) with FEM
and a similarity solution proposed in [7] (sBLA), for the reference
suspensions.
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Figure 3: Particle concentration at membrane (φw): comparison between FEM
(symbols), matched asymptotic solution of new BLA (mBLA; solid lines), and
similarity solution of previous BLA in [7] (sBLA; dashed lines). The suspension
properties are characterized by the constant (blue) and concentration-dependent
η and D (red). Inset shows φw for constant η and D with neglecting the osmotic
pressure values.

2.3 Effect of suspension properties (mBLA study)
The mBLA method is applicable also for the concentration-

dependent η, D, and Π. Different dispersions are analyzed by the
flow efficiency, Qperm/Q0

perm, where Qperm = 2πR
∫ L

0 vw(z)dz

and Q0
perm = 2πRLLP 〈∆TP 〉.
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Figure 4: Flow efficiency as function of transmembrane pressure, ∆TP , for three
types of dispersions: impermeable hard spheres (green), solvent-permeable hard
spheres (blue), and ionic microgels (red). Inset shows the particle wall concentra-
tion φw along z at ∆TP = 5 (kPa).

3 Segmented membrane (FEM study)
We add impermeable segments to the membrane, for which the

absence of permeate flux reduces the intensity (φw) of the CP layer.
As shown, the overall effect of the segmentation is minor because of
quick recovery of the CP layer following impermeable rings. This
memory effect is quantified by FEM calculations.
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Figure 5: Membrane wall concentration of particles a homogeneous membrane
(black), and a membrane with impermeable rings of length Lseg = 10R (blue),
and Lseg = 100R (red), for a hard-sphere suspension.
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Figure 6: Diffusive flux contribution ∇ · (D∇φ) (colors), and streamlines of the
particle flux jφ = φv −D∇φ (lines) near a membrane wall for 0.9R ≤ r ≤ R.

Concluding Remarks
1. Our new mBLA solutions for the concentration profile are in

quantitative good agreement with FEM results which supports
the validity of the both methods; the result by the sBLA [7]
systematically overestimate φw.

2. The CP layer for different dispersions are analyzed based on
the flow efficiency (Fig. 4). Strong deviations between charged
and neutral particles are observed because of differences in the
collective diffusion coefficient (Fig. 1).

3. For a segmented membrane, a weakening of the CP layer is ob-
served since the particles in the segments are diffusing away
from the membrane wall. The particles, however, remain near
to the wall (Fig. 6) causing a quick recovery of the CP layer.
Overall, flow efficiency is not enhanced by segmentation.
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