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Abstract. Researchers within the Human Brain Project and related
projects have in the last couple of years expanded their needs for high-
performance computing infrastructures. The needs arise from a diverse
set of science challenges that range from large-scale simulations of brain
models to processing of extreme-scale experimental data sets. The ICEI
project, which is in the process of creating a distributed infrastructure
optimised for brain research, started to build-up a set of benchmarks that
reflect the diversity of applications in this field. In this paper we analyse
the performance of some selected benchmarks on an IBM POWER8 and
Intel Skylake based systems with and without GPUs.
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1 Introduction

As new computational and data science communities emerge, needs arise for hav-
ing a benchmark suite reflecting the requirements of the respective communities,
also for potential procurement of IT equipment. At the same time, experience
needs to be collected regarding performance observations on different types of
hardware architectures. In this contribution we address the latter by selecting a
recently developed benchmark suite and comparing performance results obtained
on servers based on different processor architectures, namely POWER8 and
Skylake, with and without GPU acceleration.

The science community, on which we focus here, is the brain research commu-
nity organised in the Human Brain Project (HBP).1 HBP is a large-scale flagship
project funded by the European Commission working towards the realisation
of a cutting-edge research infrastructure that will allow researchers to advance
knowledge in the fields of neuroscience, computing, and brain-related medicine.
As part of HBP, the ICEI project (Interactive Computing e-infrastructure for the
Human Brain Project) was started in early 2018. This project plans to deliver a
set of e-infrastructure services that will be federated to form the Fenix Infrastruc-
ture.2 The European ICEI project is funded by the European Commission and is

1 https://www.humanbrainproject.eu/en/
2 https://fenix-ri.eu/
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formed by the leading European Supercomputing Centres BSC in Spain, CEA
in France, CINECA in Italy, CSCS in Switzerland and Jülich Supercomputing
Centre (JSC) in Germany. To guide the creation of this infrastructure, the ICEI
project started to build-up the “ICEI Application Benchmark Suite”, which we
use for this contribution.

This paper is organised as follows: We start with giving an overview of the
ICEI benchmark suite as well as the systems used for collecting performance
results in section 2 and 3, respectively. The obtained results are documented in
section 4. We finally provide a summary and conclusions in section 5.

2 ICEI benchmark suite

The components of the “ICEI Application Benchmark Suite” have been chosen
such that it represents the breadth of research within HBP. The subset of
benchmarks, which we consider in this paper, is directly based on real-life
applications. NEST [8] is one of several simulators that became part of the
benchmark suite. It is a simulator for spiking neural network models that focuses
on the dynamics, size, and structure of neural systems rather than on the exact
morphology of individual neurons. Recently, a significantly improved uptake of
this simulators in different areas of brain research has been observed. NEST is a
community code with an active user base. A key design goal is extreme (weak)
scalability, which could be demonstrated different supercomputers (see, e.g., [5]).
The program is written in C++ and Python, and uses MPI and OpenMP for
parallelisation.

Unlike NEST, Arbor [2] is a simulation library for networks of morphologically
detailed neurons. Simulations progress by taking half time steps for updating the
states of the cells. This allows overlapping the exchange of the spikes generated by
the cells. During the communication of spikes with other cells, similar operations
need to be performed as in case of NEST. The performance in this step will
mainly depend on memory and network performance. The step of updating
the cells is, however, more compute intensive and can potentially benefit from
compute acceleration through SIMD pipelines or GPUs. Cells are represented as
trees of line segments, on which partial differential equations for potentials are
solved using the finite-volume method. For complex cell models the second step
will dominate application performance. Arbor is mainly written in C++ and
employs MPI and OpenMP as well as CUDA for parallelisation.

The Virtual Brain (TVB) [3,4,11] is an application that aims at full brain
network simulation. It uses mesoscopic models of neural dynamics, which model
whole brain regions. For the interconnection of the different regions structural
connectivity data sets are used. The application can generate outputs on different
experimental modalities (for instance EEG or fMRI) and thus allows to compare
simulated and experimental data. To enable exploitation of supercomputers, a
new version of the application is being implemented, which is called TVB-HPC.
TVB-HPC is written in Python and aims to automatically produce code for
different targets, including processor architectures with SIMD pipelines or GPU
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accelerators. One of the targets is Numba [7], which is a tool that translates
Python functions to optimized machine code. TVB-HPC is using Numba for the
benchmark at hand to just-in-time-compile Python code to CPU assembly. MPI
is used to distribute tasks.

While the previous three applications enable different kind of brain simulations,
the remaining applications, which have been used for the “ICEI Application
Benchmark Suite” and are considered here, address data analysis tasks.

This includes ASSET [13], which is part of the Elephant (Electrophysiology
Analysis Toolkit). Elephant is a library comprising a set of tools for analysing
spike train data and other time series recordings obtained from experiments or
simulations. Elephant is written in Python and relies on NumPy and SciPy for
numerical tasks and MPI/mpi4py parallelisation. The tool ASSET (Analysis of
Sequences of Synchronous EvenTs) was developed to automatise processing of
spike data for sequences of synchronous spike events. In the ASSET benchmark
at hand, one of the main compute kernels is compiled with Cython.

Another type of data processing challenge occurs in the context of analysis
of high-resolution images of histological brain sections. To automatise the anal-
ysis of such images, applications based on deep learning techniques have been
developed [12]. The Neuroimaging Deep Learning benchmark is derived from one
such application. It is based on TensorFlow in combination with Horovod for
parallelisation, using TensorFlow’s GPU backend in the benchmark presented
here.

3 Test systems

The “ICEI Application Benchmark Suite” has been executed on a variety of
systems to improve portability and collect performance results for different
architectures. Here we focus on results obtained on two systems installed at
Jülich Supercomputing Centre:

– JURON is a pilot system dedicated to users from HBP, which was delivered
by IBM and NVIDIA in the context of a pre-commercial procurement that
was executed during an the initial phase of the HBP.

– JUWELS is a flagship cluster system at JSC, which is one of the PRACE
Tier-0 systems that are accessible for European researchers at large.

The 18 compute nodes of JURON are IBM S822LC servers (also known under
the codename Minsky). Each node comprises two IBM POWER8 processors
and four NVIDIA P100 GPUs. Each group of one processor and two GPUs is
interconnected via NVLink links. The compute nodes are connected via Mellanox
ConnectX-4 Infiniband EDR network adapters to a single switch. In the following
we use the term “CPU-only nodes” when referring to JURON nodes where the
GPUs are not used.

The JUWELS cluster comprises 2511 CPU-only and 48 GPU-accelerated
compute nodes. Each comprises two Intel processors of the Skylake generation.
The GPU-accelerated nodes are additionally equipped with four NVIDIA V100
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GPUs. While the four GPUs are interconnected via NVLink in an all-to-all
topology, each GPU is only connected via one PCIe Gen3 link to one of the
CPUs. The compute nodes furthermore comprise a single Mellanox ConnectX-5
Infiniband EDR network adapter through which they are interconnected using a
fat-tree topology.

A more detailed comparison of the hardware capabilities of the nodes used
for either system are collected in Table 1. As the benchmarks considered here
are compute-only (any time spent in I/O is not considered), we do not report on
I/O capabilities of both systems.

Table 1. Comparison of node-level aggregated hardware parameters.

JURON JUWELS

Type of CPU POWER8 Intel Xeon Platinum 8168 /
Intel Xeon Gold 6148 (GPU-acc.)

Number of CPUs 2 2
Number of cores 20 48 / 40
Number of hardware threads 160 96 / 80
SIMD width / bit 128 512
Throughput / Flop/cycle 160 1536 / 1280
Memory capacity / GiB 256 ≥96
Memory bandwidth / GB/s 230 255
LLC capacity / MiB 160 66 / 27.5

Number of GPUs 4 – / 4
Type of GPU P100 SXM2 V100 SXM2
Throughput / Flop/cycle 14 336 20 480
Memory capacity / GiB 64 64
Memory bandwidth / GB/s 2880 3600

4 Results

In this section we document selected results for the benchmark derived from the
applications introduced in section 2, which have been obtained on the systems
introduced in section 3.

4.1 NEST

The benchmark is based on Version 2.14 of NEST [10].3 Simulations are performed
using a randomly connected network of 112 500 neurons with each neuron being

3 https://github.com/nest/nest-simulator.git
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