000867775 001__ 867775
000867775 005__ 20240709094453.0
000867775 0247_ $$2doi$$a10.1016/j.calphad.2019.101668
000867775 0247_ $$2ISSN$$a0364-5916
000867775 0247_ $$2ISSN$$a1873-2984
000867775 0247_ $$2altmetric$$aaltmetric:66554136
000867775 0247_ $$2WOS$$aWOS:000501935500006
000867775 037__ $$aFZJ-2019-06385
000867775 082__ $$a540
000867775 1001_ $$0P:(DE-HGF)0$$aJantzen, Tatjana$$b0
000867775 245__ $$aThermodynamic assessment of the CaO–P2O5–SiO2–ZnO system with special emphasis on the addition of ZnO to the Ca2SiO4–Ca3P2O8 phase
000867775 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000867775 3367_ $$2DRIVER$$aarticle
000867775 3367_ $$2DataCite$$aOutput Types/Journal article
000867775 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576586917_32427
000867775 3367_ $$2BibTeX$$aARTICLE
000867775 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867775 3367_ $$00$$2EndNote$$aJournal Article
000867775 520__ $$aThe CaO–P2O5–SiO2–ZnO system including all binary and ternary sub-systems has been thermodynamically assessed using all available experimental data. Particular attention was given to the phase C2S–C3P which forms a complete solid solution with end-members α-Ca2SiO4 and α′-Ca3P2O8. In addition, the present modelling of the phase C2S–C3P allows the inclusion of experimentally determined solubility values of zinc oxide in both end-members of the phase C2S–C3P. The mutual solubility between different crystallographic modifications of calcium and zinc phosphates is also described in this work using available experimental data. 24 phospates as stoichiometric phases have also been included in the database.
000867775 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000867775 588__ $$aDataset connected to CrossRef
000867775 7001_ $$0P:(DE-Juel1)129813$$aYazhenskikh, Elena$$b1$$ufzj
000867775 7001_ $$0P:(DE-HGF)0$$aHack, Klaus$$b2
000867775 7001_ $$0P:(DE-Juel1)129765$$aMüller, Michael$$b3$$eCorresponding author$$ufzj
000867775 773__ $$0PERI:(DE-600)1501512-9$$a10.1016/j.calphad.2019.101668$$gVol. 67, p. 101668 -$$p101668 -$$tCalphad$$v67$$x0364-5916$$y2019
000867775 909CO $$ooai:juser.fz-juelich.de:867775$$pVDB
000867775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129813$$aForschungszentrum Jülich$$b1$$kFZJ
000867775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129765$$aForschungszentrum Jülich$$b3$$kFZJ
000867775 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000867775 9141_ $$y2019
000867775 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867775 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCALPHAD : 2017
000867775 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867775 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867775 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867775 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867775 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867775 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867775 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867775 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867775 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000867775 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867775 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000867775 980__ $$ajournal
000867775 980__ $$aVDB
000867775 980__ $$aI:(DE-Juel1)IEK-2-20101013
000867775 980__ $$aUNRESTRICTED
000867775 981__ $$aI:(DE-Juel1)IMD-1-20101013