000867785 001__ 867785
000867785 005__ 20250701125913.0
000867785 037__ $$aFZJ-2019-06395
000867785 041__ $$aEnglish
000867785 1001_ $$0P:(DE-HGF)0$$aEisenhut, S.$$b0
000867785 1112_ $$aWorkshop SCANS – A Compact Accelerator-Driven Neutron Source for Scandinavia?$$cInstitute for Energy Technology, Kjeller$$d2019-12-16 - 2019-12-17$$wNorway
000867785 245__ $$aCryostat for the provision of liquid hydrogen with variable ortho-para-ratio for a low-dimensional cold neutron moderator
000867785 260__ $$c2019
000867785 3367_ $$033$$2EndNote$$aConference Paper
000867785 3367_ $$2DataCite$$aOther
000867785 3367_ $$2BibTeX$$aINPROCEEDINGS
000867785 3367_ $$2DRIVER$$aconferenceObject
000867785 3367_ $$2ORCID$$aLECTURE_SPEECH
000867785 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1576509431_1171$$xInvited
000867785 520__ $$aA significant contribution to the enhancement of the neutron brilliance achievable with Compact Accelerator-driven Neutron Sources (CANS) can be made by an optimized cold moderator design. When using liquid para-H2 as the moderating medium, the concept of low-dimensional cold moderators can be employed to increase the neutron brightness (as currently foreseen at the European Spallation Source ESS). Para-H2 shows a drop in the scattering cross section by about one order of magnitude around 15 meV, resulting in large deviation between the mean free paths of thermal and cold neutrons. Taking advantage of this effect, the cold moderator geometry can be optimized to allow the intake of thermal neutrons through a relatively large envelope surface and then extracting them in an efficient way towards the neutron guides. One drawback of this solution is the lack of thermalization of the cold neutrons. In the context of the HBS (High Brilliance Source) project, efforts are made to overcome this problem by increasing the scattering cross section of the H2 in a defined way. The idea is to admix small amounts of ortho-H2, which maintains its large scattering cross section in the region below 15 meV. Like this, the neutron spectrum can be shifted towards lower energies and adjusted for the needs of the respective instrument. In a cooperation between TU Dresden and FZ Jülich, an experimental setup has been created to proof the feasibility of this concept. The main component of the experimental setup is a LHe-cooled flow cryostat that enables the separate condensation of a para-H2 and a normal-H2 flow and a subsequent mixing of the two in precise proportions. The resulting LH2 mixture at 17 – 20 K is fed into a small cold moderator vessel (approx. 200 ml). In this work, the current status of the setup is presented. The construction and commissioning of the mixing cryostat have been completed and extensive test runs show that different, stable ortho-para-H2 mixtures can be produced and monitored. Currently, preparations for first measurements of the resulting neutron spectra are being prepared at Forschungszentrum Jülich.
000867785 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000867785 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000867785 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000867785 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000867785 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000867785 7001_ $$0P:(DE-HGF)0$$aKlaus, M.$$b1
000867785 7001_ $$0P:(DE-Juel1)169802$$aBaggemann, J.$$b2
000867785 7001_ $$0P:(DE-Juel1)130928$$aRücker, U.$$b3
000867785 7001_ $$0P:(DE-Juel1)143938$$aBeßler, Y.$$b4
000867785 7001_ $$0P:(DE-HGF)0$$aHaberstroh, C.$$b5
000867785 7001_ $$0P:(DE-Juel1)164368$$aCronert, T.$$b6
000867785 7001_ $$0P:(DE-Juel1)168124$$aGutberlet, T.$$b7$$ufzj
000867785 7001_ $$0P:(DE-Juel1)130572$$aBrückel, T.$$b8
000867785 7001_ $$0P:(DE-HGF)0$$aLange, C.$$b9
000867785 909CO $$ooai:juser.fz-juelich.de:867785$$pVDB
000867785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169802$$aForschungszentrum Jülich$$b2$$kFZJ
000867785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130928$$aForschungszentrum Jülich$$b3$$kFZJ
000867785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143938$$aForschungszentrum Jülich$$b4$$kFZJ
000867785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164368$$aForschungszentrum Jülich$$b6$$kFZJ
000867785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168124$$aForschungszentrum Jülich$$b7$$kFZJ
000867785 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b8$$kFZJ
000867785 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000867785 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000867785 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000867785 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000867785 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000867785 9141_ $$y2019
000867785 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000867785 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000867785 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000867785 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x3
000867785 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x4
000867785 980__ $$aconf
000867785 980__ $$aVDB
000867785 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000867785 980__ $$aI:(DE-Juel1)PGI-4-20110106
000867785 980__ $$aI:(DE-82)080009_20140620
000867785 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709
000867785 980__ $$aI:(DE-Juel1)ZEA-1-20090406
000867785 980__ $$aUNRESTRICTED
000867785 981__ $$aI:(DE-Juel1)ITE-20250108
000867785 981__ $$aI:(DE-Juel1)JCNS-2-20110106