000867787 001__ 867787
000867787 005__ 20240619092107.0
000867787 0247_ $$2doi$$a10.1002/macp.201900453
000867787 0247_ $$2ISSN$$a0025-116X
000867787 0247_ $$2ISSN$$a1022-1352
000867787 0247_ $$2ISSN$$a1521-3935
000867787 0247_ $$2Handle$$a2128/26540
000867787 0247_ $$2WOS$$aWOS:000501355800001
000867787 037__ $$aFZJ-2019-06397
000867787 082__ $$a540
000867787 1001_ $$0P:(DE-Juel1)172689$$aHofmann, Eddie$$b0
000867787 245__ $$aControlling Polymer Microfiber Structure by Micro Solution Blow Spinning
000867787 260__ $$aWeinheim$$bWiley-VCH$$c2019
000867787 3367_ $$2DRIVER$$aarticle
000867787 3367_ $$2DataCite$$aOutput Types/Journal article
000867787 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607971418_30277
000867787 3367_ $$2BibTeX$$aARTICLE
000867787 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867787 3367_ $$00$$2EndNote$$aJournal Article
000867787 520__ $$aRecent progress in microfluidic technology allows fabricating microfluidic devices to produce liquid microjets with unprecedented control of the jet diameter and velocity. Here it is demonstrated that microfluidic devices based on the gas dynamic virtual nozzle principle can be excellently used for micro solution blow spinning to continuously fabricate microfibers with excellent control of the fiber diameter and the internal crystalline alignment that determines the mechanical properties. Fiber spinning experiments with small‐ and wide‐angle X‐ray scattering are combined to directly relate the macroscopic spinning conditions to the bulk and molecular structure of the resulting fibers. The elongational rate is shown as the relevant parameter that transduces the nozzle flow conditions to the local macromolecular structure and orientation, and thus the mechanical properties of the resulting fiber. It is observed that the spinning process results in very uniform microfibers with a well‐defined shish–kebab crystal structure, which evolves into an extended chain crystal structure upon plastic deformation. Thus, the presented microfluidic spinning methodology has great implications for a precisely controlled production of microfibers using miniaturized spinning devices.
000867787 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000867787 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000867787 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000867787 588__ $$aDataset connected to CrossRef
000867787 7001_ $$0P:(DE-Juel1)172746$$aDulle, Martin$$b1
000867787 7001_ $$0P:(DE-HGF)0$$aLiao, Xiaojian$$b2
000867787 7001_ $$0P:(DE-HGF)0$$aGreiner, Andreas$$b3
000867787 7001_ $$0P:(DE-Juel1)172658$$aFörster, Stephan$$b4$$eCorresponding author
000867787 773__ $$0PERI:(DE-600)1475026-0$$a10.1002/macp.201900453$$gp. 1900453 -$$n1$$p1900453 -$$tMacromolecular chemistry and physics$$v221$$x1521-3935$$y2019
000867787 8564_ $$uhttps://juser.fz-juelich.de/record/867787/files/macp.201900453.pdf$$yOpenAccess
000867787 8767_ $$92019-12-05$$d2019-12-10$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pmacp.201900453
000867787 909CO $$ooai:juser.fz-juelich.de:867787$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000867787 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172746$$aForschungszentrum Jülich$$b1$$kFZJ
000867787 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172658$$aForschungszentrum Jülich$$b4$$kFZJ
000867787 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000867787 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000867787 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000867787 9141_ $$y2019
000867787 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867787 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867787 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000867787 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACROMOL CHEM PHYS : 2017
000867787 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867787 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867787 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867787 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867787 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867787 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867787 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867787 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867787 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000867787 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867787 920__ $$lyes
000867787 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x0
000867787 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung$$x1
000867787 9801_ $$aAPC
000867787 9801_ $$aFullTexts
000867787 980__ $$ajournal
000867787 980__ $$aVDB
000867787 980__ $$aUNRESTRICTED
000867787 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000867787 980__ $$aI:(DE-Juel1)ICS-1-20110106
000867787 980__ $$aAPC
000867787 981__ $$aI:(DE-Juel1)IBI-8-20200312
000867787 981__ $$aI:(DE-Juel1)JCNS-1-20110106