000867794 001__ 867794
000867794 005__ 20210130003908.0
000867794 0247_ $$2doi$$a10.1103/PhysRevResearch.1.033128
000867794 0247_ $$2Handle$$a2128/23792
000867794 0247_ $$2WOS$$aWOS:000600646900004
000867794 037__ $$aFZJ-2019-06404
000867794 082__ $$a530
000867794 1001_ $$0P:(DE-Juel1)173836$$aRoth, Marco$$b0$$ufzj
000867794 245__ $$aOptimal gauge for the multimode Rabi model in circuit QED
000867794 260__ $$aCollege Park, MD$$bAPS$$c2019
000867794 3367_ $$2DRIVER$$aarticle
000867794 3367_ $$2DataCite$$aOutput Types/Journal article
000867794 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1578404655_27269
000867794 3367_ $$2BibTeX$$aARTICLE
000867794 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867794 3367_ $$00$$2EndNote$$aJournal Article
000867794 520__ $$aIn circuit QED, a Rabi model can be derived by truncating the Hilbert space of an anharmonic qubit coupled to a resonator. This truncation breaks the gauge invariance present in the full Hamiltonian. Here we derive a simple criterion for an optimal gauge such that the differences between the truncated and the full Hamiltonian are minimized. We find that it is determined by the ratio of the anharmonicity of the qubit to an averaged resonator frequency. We demonstrate that the usual choices of flux and charge gauge are not necessarily the preferred options in the case of multiple resonator modes.
000867794 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000867794 588__ $$aDataset connected to CrossRef
000867794 7001_ $$0P:(DE-HGF)0$$aHassler, Fabian$$b1
000867794 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b2$$eCorresponding author$$ufzj
000867794 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.1.033128$$gVol. 1, no. 3, p. 033128$$n3$$p033128$$tPhysical review research$$v1$$x2643-1564$$y2019
000867794 8564_ $$uhttps://juser.fz-juelich.de/record/867794/files/PhysRevResearch.1.033128.pdf$$yOpenAccess
000867794 8564_ $$uhttps://juser.fz-juelich.de/record/867794/files/PhysRevResearch.1.033128.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867794 909CO $$ooai:juser.fz-juelich.de:867794$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173836$$aForschungszentrum Jülich$$b0$$kFZJ
000867794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b2$$kFZJ
000867794 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000867794 9141_ $$y2019
000867794 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867794 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000867794 920__ $$lyes
000867794 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000867794 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
000867794 980__ $$ajournal
000867794 980__ $$aVDB
000867794 980__ $$aUNRESTRICTED
000867794 980__ $$aI:(DE-Juel1)PGI-2-20110106
000867794 980__ $$aI:(DE-Juel1)PGI-11-20170113
000867794 9801_ $$aFullTexts