000867794 001__ 867794 000867794 005__ 20210130003908.0 000867794 0247_ $$2doi$$a10.1103/PhysRevResearch.1.033128 000867794 0247_ $$2Handle$$a2128/23792 000867794 0247_ $$2WOS$$aWOS:000600646900004 000867794 037__ $$aFZJ-2019-06404 000867794 082__ $$a530 000867794 1001_ $$0P:(DE-Juel1)173836$$aRoth, Marco$$b0$$ufzj 000867794 245__ $$aOptimal gauge for the multimode Rabi model in circuit QED 000867794 260__ $$aCollege Park, MD$$bAPS$$c2019 000867794 3367_ $$2DRIVER$$aarticle 000867794 3367_ $$2DataCite$$aOutput Types/Journal article 000867794 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1578404655_27269 000867794 3367_ $$2BibTeX$$aARTICLE 000867794 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000867794 3367_ $$00$$2EndNote$$aJournal Article 000867794 520__ $$aIn circuit QED, a Rabi model can be derived by truncating the Hilbert space of an anharmonic qubit coupled to a resonator. This truncation breaks the gauge invariance present in the full Hamiltonian. Here we derive a simple criterion for an optimal gauge such that the differences between the truncated and the full Hamiltonian are minimized. We find that it is determined by the ratio of the anharmonicity of the qubit to an averaged resonator frequency. We demonstrate that the usual choices of flux and charge gauge are not necessarily the preferred options in the case of multiple resonator modes. 000867794 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0 000867794 588__ $$aDataset connected to CrossRef 000867794 7001_ $$0P:(DE-HGF)0$$aHassler, Fabian$$b1 000867794 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b2$$eCorresponding author$$ufzj 000867794 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.1.033128$$gVol. 1, no. 3, p. 033128$$n3$$p033128$$tPhysical review research$$v1$$x2643-1564$$y2019 000867794 8564_ $$uhttps://juser.fz-juelich.de/record/867794/files/PhysRevResearch.1.033128.pdf$$yOpenAccess 000867794 8564_ $$uhttps://juser.fz-juelich.de/record/867794/files/PhysRevResearch.1.033128.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000867794 909CO $$ooai:juser.fz-juelich.de:867794$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000867794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173836$$aForschungszentrum Jülich$$b0$$kFZJ 000867794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b2$$kFZJ 000867794 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000867794 9141_ $$y2019 000867794 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000867794 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000867794 920__ $$lyes 000867794 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 000867794 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1 000867794 980__ $$ajournal 000867794 980__ $$aVDB 000867794 980__ $$aUNRESTRICTED 000867794 980__ $$aI:(DE-Juel1)PGI-2-20110106 000867794 980__ $$aI:(DE-Juel1)PGI-11-20170113 000867794 9801_ $$aFullTexts