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Optimal gauge for the multimode Rabi model in circuit QED
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In circuit QED, a Rabi model can be derived by truncating the Hilbert space of an anharmonic qubit coupled to

a resonator. This truncation breaks the gauge invariance present in the full Hamiltonian. Here we derive a simple

criterion for an optimal gauge such that the differences between the truncated and the full Hamiltonian are

minimized. We find that it is determined by the ratio of the anharmonicity of the qubit to an averaged resonator

frequency. We demonstrate that the usual choices of flux and charge gauge are not necessarily the preferred

options in the case of multiple resonator modes.
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I. INTRODUCTION

Circuit QED [1,2] is a central subject of quantum in-

formation science that has deepened our understanding of

light-matter interaction [3–5]. Most implementations feature a

two-level system (qubit) that is coupled to a linear resonator.

The qubit is formed by the two lowest energy levels of an

anharmonic multilevel system. For the physics of interest,

only the qubit subspace is important. The Schrieffer-Wolff

(SW) transformation [6,7] is the standard method to pertur-

batively derive an effective Hamiltonian description within

this subspace. For most purposes, it is sufficient to consider

the effective Hamiltonian only to first order, yielding the

well known quantum Rabi model (QRM). However, since the

Hamiltonian of the nontruncated system is unique only up

to a unitary transformation, the effective description is gauge

dependent to every finite order [8,9]. This gauge ambiguity

becomes particularly important in the (ultra)strong-coupling

regime. It has been found that the QRM derived in a gauge

where the qubit-resonator coupling is mediated by the flux

variables leads to different predictions than the one where

the coupling is mediated by the charge variables [10–12].

For example, it has been shown that the QRM derived in

the charge gauge may completely fail to predict the energy

spectrum of a fluxonium qubit [10].

In this work, we look at the issue from a different per-

spective. We use the gauge degree of freedom to find an

optimal gauge such that the results of the effective model are

as close as possible to the full model. Importantly, we take

account of the need for a multimode description [13–17] in

the quest to achieve the ultrastrong-coupling regime [18–21].

To increase the flexibility, we not only consider the extremal

cases of purely flux or charge-mediated coupling, but perform

a general gauge transformation that smoothly interpolates
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between the two. A similar transformation has been used

in [22] to extend the Jaynes-Cummings model into the

ultrastrong-coupling regime.

We are interested in a situation where the system is de-

scribed by a QRM, a two-level qubit coupled to many os-

cillator levels. In this case, a large positive anharmonicity is

required to avoid coupling to higher qubit levels. We find that

the second-order term of the effective Hamiltonian within the

SW method is a good indicator of the validity of the QRM.

Based on this observation, we derive a simple analytical

criterion for the optimal gauge and benchmark it against

numerical simulations of the full problem. For a strongly

anharmonic qubit resonantly coupled to a single-mode res-

onator, the flux gauge is always the best gauge [10,11,20].

This serves as an analog of the dipole gauge in quantum optics

[23]. Considering more than one mode drastically changes

this simple picture. The optimal gauge may now deviate from

the pure flux gauge as can be demonstrated with two resonator

modes. We show that this already has implications for weak

to moderate coupling.

II. GENERAL MODEL

Consider a qubit consisting of an LC oscillator in parallel

with a symmetric potential U (φq ) that is coupled to a mul-

timode resonator [cf. Fig. 1(a)]. We denote the qubit Hamil-

tonian by Hq and the resonator Hamiltonian by Hr. They are

coupled via the interaction V such that the total Hamiltonian

is given by H = Hq + Hr + V . Using the unitary freedom of

the Hamiltonian formalism, we introduce a gauge parameter

η ∈ [0, 1] (see Appendix A) that linearly interpolates between

a qubit-resonator interaction mediated by the flux variables φk

(for η = 0) and the charge variables Qk (for η = 1). We will

refer to these extremal cases as the flux and the charge gauge,

respectively. For a general gauge, the interaction reads

V (η) = −
N

∑

k=1

[

(1 − η)φqφk

Lk

+
η QqQk

C�

]

+ (1 − η)2

N
∑

k=1

φ2
q

2Lk

+ η2

(
∑N

k=1 Qk

)2

2C�

; (1)
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FIG. 1. (a) Circuit diagram of a qubit with potential U (φq ), ca-

pacitance Cq, and inductance Lq that is coupled to a general reactive

environment. In the Foster form, the latter is represented by N

resonators with capacitances Ck and inductances Lk (k = 1, . . . , N).

(b) Fluxonium qubit (consisting of a Josephson junction with energy

EJ in parallel to the capacitance Cq and a large inductance Lq),

capacitively coupled to two resonators with inductances Lrk
and

capacitances Crk
(k = 1, 2). In the text, the example of a single

resonator (dashed box) is treated separately.

here C� = Cq + C0 denotes the total capacitance of the qubit

to ground. The first term of Eq. (1) is the analog of the

paramagnetic coupling. The second is a diamagnetic term

that renormalizes the qubit and the resonator frequencies and

ensures the gauge invariance of the full Hamiltonian [24].

In deriving Eq. (1) we have defined the qubit variable to be

the one associated with the anharmonic potential U (φq ). The

derivation of the full Hamiltonian is detailed in Appendix B.

For most quantum information applications, we are inter-

ested in projecting Hq onto a subspace S = {|0〉, |1〉} spanned

by the two lowest eigenstates. To obtain an effective Hamilto-

nian, we apply the SW method resulting in Heff =
∑K

j=0 H j

to K th order. In Appendix C we show that the first-order

result H0 + H1 corresponds to the projection of H onto S. It is

equivalent to the generalized QRM1

HQRM(η) = −
h̄ω

q

10

2
σ z +

N
∑

k=1

h̄ωka
†
k
ak

+ h̄

N
∑

k=1

[

(1−η)g
φ

k
σ x(ak +a

†
k
)+ηg

Q

k
σ y(ak −a

†
k
)
]

,

(2)

where h̄ω
q
nm is the energy difference between the nth and the

mth eigenstate of Hq and σ j ( j = x, y, z) denote the Pauli

operators. In Eq. (2) we have rewritten the variables of the

kth resonator mode with frequency ωk in terms of bosonic

creation operators a
†
k

and annihilation operators ak . The cou-

pling between the qubit and the kth resonator mode is given by

1Here the parity symmetry U (−φq ) = U (φq ) is important for giv-

ing the selection rules 〈 j|Qq| j〉 = 〈 j|φq| j〉 = 0.

g
φ

k
= 〈1|φq|0〉

√

Zk/2h̄L2
k and g

Q

k
= 〈1|Qq|0〉/

√

2h̄ZkC
2
� , where

Zk is the characteristic impedance of the kth mode. In deriving

Eq. (2) we neglected the diamagnetic shift due to the second

term present in Eq. (1) for simplicity. For weak coupling, the

diamagnetic shift is irrelevant. In general, it can be accounted

for using symplectic diagonalization [25,26].

Restricting the perturbative series of Heff to any finite order

necessarily results in a gauge-dependent model. The source

of the gauge dependence of the QRM is that the coupling

between the subspace S and its orthogonal complement S⊥ is

not properly taken into account in the projection. Increasing

the order K weakens the gauge dependence [27,28] at the ex-

pense of introducing a dressed basis that results in a model that

strays quite far from the natural interpretation of the QRM.

In this respect, the lowest-order approximation provided by

the QRM is an appealing model as it yields a low-energy

description without rotating the basis. In the simple effective

model (2), choosing a gauge such that the QRM accurately

captures the physics of the full Hamiltonian is crucial. We

are thus concerned with the task of finding an optimal gauge

parameter η∗ such that the differences between the QRM and

the full Hamiltonian are minimized.

III. OPTIMAL GAUGE

To address this issue, we note that the validity of the QRM

is directly proportional to the coupling strength between S

and S⊥. The higher-order SW terms H j ( j > 1) can therefore

be used as an estimator for the difference between the full

model and its effective description as a QRM. Based on this

observation, we derive an analytic criterion for the optimal

gauge.

In particular, we focus on the second-order term H2,

which will provide the largest corrections to HQRM for

weak to moderate coupling; H2 is proportional to matrix

elements Vnm = 〈n|V |m〉 of the interaction, where |n〉 ∈ S

and |m〉 ∈ S⊥. Motivated by Eq. (1), we define the para-

magnetic flux coupling operator G
φ

k
= φqφ

zp

k
/h̄Lk and the

charge coupling operator G
Q

k
= QqQ

zp

k
/h̄C� .2 Here we have

approximated the resonator matrix elements by their zero-

point fluctuations φ
zp

k
≃

√
h̄Zk and Q

zp

k
≃

√
h̄/Zk , respec-

tively. In order to estimate the relevance of the flux versus

the charge coupling (for the transition m 	→ n), we introduce

the ratio fnm = [
∑

k (G
φ

k
)nm]/[

∑

k (G
Q

k
)nm]. Using the fact that

(Qq )nm = iω
q
nmC� (φq )nm, it can be compactly rewritten as

| fnm| =
∑

k pkωk

ω
q
nm

=
ω̄

ω
q
nm

, (3)

where ω̄ is the average of the resonator frequencies ωk with

the weights pk = Z
−1/2

k
/
∑

l Z
−1/2

l
.

The interpretation of Eq. (3) is as follows: If | fnm| ≪ 1, the

coupling between S and S⊥ in the flux gauge is much smaller

2Note that the couplings Gφ and GQ are generalizations of the

couplings introduced in Eq. (2) such that 〈0|Gφ |1〉 = −gφ and

〈0|GQ|1〉 = −igQ.
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than the coupling in the charge gauge. The QRM with η ≈ 0

is therefore a good approximation of the full model, making

the flux gauge the preferred choice. However, if | fnm| ≫ 1,

the coupling of the qubit subspace to higher levels is small

in the charge gauge, which thus is the optimal gauge. In the

intermediate regime, where | fnm| ≃ 1, both flux and charge

variables contribute similarly to the coupling between S and

S⊥. Consequently, we expect the optimal gauge to be neither

the pure charge nor the flux gauge but a mixed gauge with

η �= 0, 1.

For weak qubit-resonator interactions, the dominant con-

tribution to H2 will be due to the coupling of the first and

second excited level of the qubit. The character of the coupling

of the optimal gauge is therefore mostly determined by the

ratio of the frequency difference between the first and second

excited qubit level to an effective frequency of the resonator.

We conclude that f21 of Eq. (3) provides a simple estimation

of the optimal coupling. We illustrate these findings with two

specific examples in the following.

A. Single resonator

First, we consider a qubit coupled to a single resonator

(N = 1). Note that in this case the average frequency ω̄ in

Eq. (3) is equal to ω1. For the interaction between the qubit

and the resonator mode to be appreciable, we assume that

ω1 ≃ ω
q

10. Consequently, Eq. (3) yields | f21| ≃ ω
q

10/ω
q

21 and

the optimal gauge is solely determined by the properties

of the qubit. To reach strong coupling, the qubit has to be

anharmonic with ω
q

10 ≪ ω
q

21 [20]. This implies | f21| ≪ 1, so

we find that the flux gauge is always the optimal gauge for this

case.

To demonstrate this result, we numerically study the

fluxonium qubit with EL = (φ0/2π )2/Lq � EJ and U (φq ) =
−EJ cos[2π (φq − φext )/φ0] [29]; here EJ is the Josephson en-

ergy, φ0 = h/2e is the superconducting flux quantum, and φext

is an external magnetic flux threading the superconducting

loop. We set the external flux to the degeneracy point φext =
1
2
φ0, which results in a symmetric potential. The qubit param-

eters are chosen such that the qubit is strongly anharmonic

with ω
q

21/ω
q

10 ≈ 25 (see Fig. 2 for details). The fluxonium

qubit is coupled to a parallel combination of a capacitor Cr1

and inductance Lr1
which together form a resonator with a

frequency ω1 = ω
q

10 [cf. Fig. 1(b) (dashed box)]. As is shown

in Appendix D, the setup can be mapped to the canonical

Foster circuit with N = 1 depicted in Fig. 1(a).

Figure 2(a) shows the spectrum of the full Hamiltonian

(solid) compared to the spectrum of HQRM (dotted) as a

function of η. The spectra agree well in the flux gauge (η =
0). For increasing values of η, that is, for more chargelike

gauges, the spectral agreement between truncated and full

model decreases. The disagreement is more pronounced in

levels with higher energy as they are closer to the energy of

the second excited level of the qubit. We observe that f21

of Eq. (3) is suitable for estimating the overall tendency for

being chargelike or fluxlike. A more quantitative estimate of

the optimal coupling η∗ can be obtained by calculating the

norm of H2. Based on the discussion surrounding Eq. (3),

we expect that η∗ is approximately the η for which the norm

FIG. 2. Spectrum of the full Hamiltonian H (solid lines) and

the Rabi model Hamiltonian HQRM (dashed lines) for a fluxonium

qubit coupled to (a) a single resonator and (b) two resonators. The

qubit parameters are (EJ, EC, EL ) = h̄(12.5, 3.75, 0.5) GHz, where

EC = e2/2C� and EL = (φ0/2π )2/Lq. The resulting qubit frequen-

cies are ω
q

10 = 0.5 GHz and ω
q

21 ≈ 13 GHz. Furthermore, ω1 = ω
q

10

and g
φ

1/ω1 = 0.07. In (b) the parameters of the second resonator are

Cr2
= Cr1

, Cc2
= Cc1

, and ω2 ≈ ω
q

12 such that ω̄ = 10.7 GHz. The

value η∗ that minimizes ‖H2‖∗ is shown as a vertical dashed line.

‖H2‖∗ is minimized.3 For the parameters in Fig. 2(a), the

minimum of ‖H2‖∗ is at η = 0, which is shown as a red dashed

line and agrees well with the visual impression conveyed

by the spectrum. A quantitative analysis can be found in

Appendix E.

B. Two resonators

As a second example, we treat the case where there are

two relevant modes (N = 2). As before, the first mode is

close to resonance with the qubit frequency. The second mode

with frequency ω2 can be interpreted as a parasitic mode.

Since the average frequency ω̄ in Eq. (3) is a function of

all modes coupled to the qubit, the optimal gauge is now

also dependent on the parasitic mode. This is true even for

strongly off-resonant modes, as the coupling to higher modes

in the flux gauge increases proportionally to (ω2)2 at fixed

impedance [see Eq. (1)]. As a result, for large detuning with

ω2 ≫ ω
q

21, the charge gauge becomes more favorable. In

contrast to the resonant single-mode case, the optimal gauge

for two resonators is not determined by the properties of the

qubit alone but depends on the parameters of the whole circuit.

To show this effect, we perform numerical simulations

of the circuit in Fig. 1(b). The fluxonium is capacitively

coupled to two parallel LC oscillators via the capacitances

Cc1
and Cc2

. This circuit can be mapped to the canonical

Foster circuit depicted in Fig. 1(a) (Appendix D). Figure 2(b)

shows the spectrum of the full Hamiltonian (black solid line)

and the QRM (blue dashed line) as a function of η. The

3In Figs. 2 and 3 we have used the trace norm ‖H‖∗ =
∑

k |λk |
for a Hermitian operator H with eigenvalues λk . Since we are only

interested in the value of η that minimizes the norm of H2, other

norms can be used as well.
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parameters of the qubit and the first resonator are the same as

in Fig. 2(a). The frequency of the second resonator, however,

is significantly larger such that ω̄ ≈ ω
q

12. In contrast to the

single-resonator case, the spectral lines of H and HQRM do not

cross at η ≈ 0 but rather around η ≈ 0.5, suggesting that the

optimal gauge does not coincide with the usual ad hoc choices

of the flux or charge gauge. This is in agreement with the

prediction based on the minimization of ‖H2‖∗, which yields

η∗ = 0.45 (shown as a dashed vertical line).

The deviation between H and HQRM is state dependent for

finite qubit anharmonicities, a fact that we have neglected so

far. As a result, the intersection of the spectral lines of H and

HQRM in Fig. 2(b) is shifted towards smaller values of η for

increasing energy of the levels. In the intermediate regime

where ω21
q ≃ ω̄ ( f21 ≃ 1), the optimal gauge is thus always a

compromise which minimizes the differences of H and HQRM

in the relevant spectral range.

To demonstrate the dependence of the optimal gauge on

ω̄, we keep the frequency ω1 of the first mode in resonance

with the qubit while varying ω̄. To simulate an experimentally

feasible scenario, we choose the inductance Lr2
of the second

resonator as the parameter that we vary [30]. Decreasing

Lr2
while keeping all other parameters constant increases the

frequency ω2 of the parasitic mode while simultaneously de-

creasing its impedance. Since ω̄ decreases with the square root

of Z2 but increases linearly with ω2, the average frequency

FIG. 3. (a) Deviation σ of the energy eigenvalues of the full

model from the energy eigenvalues of the QRM as a function of η and

ω̄. The qubit parameters and the parameters of the first resonator are

the same as in Fig. 2. The coupling capacitances to both resonators

are equal Cc1
= Cc2

= Cc. The average frequency ω̄ is varied by

changing the inductance of the second resonator Lr2
. The value ησ

for which σ is minimized is shown as a solid line. The value of η∗
for which ‖H2‖∗ is minimized is shown as a dashed line. (b) Coupling

strength between qubit levels n and m (see the legend) as a function

of ω̄.

ω̄ grows with decreasing Lr2
. To quantify the agreement

between the full Hamiltonian and the QRM, we use the

standard deviation σ = [
∑M

i=0(Ei − ei )
2/M]1/2 between the

energies Ei of the full Hamiltonian and the energies ei of the

QRM (measured from the respective ground-state energy). We

denote the value of η for which σ is minimized by ησ .

Figure 3(a) shows σ as a function of ω̄ and η for M = 10.

We see that ησ ≈ 0 (flux gauge) for ω̄ ≪ ω
q

10. Increasing the

average frequency ω̄, the optimal gauge moves towards the

charge gauge. Furthermore, we note that although the minimal

value of σ increases with increasing ω̄, the overall deviation

between the full model and the QRM at ησ is only a few

percent. The value η∗ which minimizes ‖H2‖∗ is shown as

a dashed line. It can be observed that η∗ behaves similarly

to ησ .

To support our discussion surrounding Eq. (3), we analyze

the coupling between S and S⊥. Figure 3(b) shows (G
φ

2 )nm

(black lines) and (G
Q
2 )nm (blue lines) for the parameters of

Fig. 3(a). In general, the charge coupling GQ decreases while

the flux coupling Gφ increases with increasing ω̄. For small

values of ω̄, the dominant quantity is (G
Q
2 )21. This results

in a large coupling between S and S⊥ in the charge gauge,

making the flux gauge the preferred choice. As ω̄ increases,

the coupling to the higher qubit levels in the charge variables

decreases and eventually becomes comparable to the coupling

in the flux variables, making the choice of the optimal gauge

less trivial.

IV. CONCLUSION

We have analyzed the gauge dependence of the effective

description of an anharmonic system coupled to a multimode

resonator. Using a SW transformation, we have derived a

simple analytic criterion that predicts the optimal gauge where

the physics of the nontruncated Hamiltonian is accurately

captured by the QRM. We have demonstrated that the optimal

gauge for a qubit resonantly coupled to a single resonator is

completely determined by the qubit parameters and is in the

fluxlike regime for strongly anharmonic qubits. We have seen

that coupling a qubit to more than one mode can result in an

optimal gauge that is neither the charge nor the flux gauge but

a nontrivial combination of the two. This is especially relevant

given the increasing interest in the strong qubit-resonator

coupling, which raises the need for multimode descriptions.

An investigation into the ultrastrong-coupling regime thus

constitutes a natural extension of this work in the future.
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APPENDIX A: GAUGE TRANSFORMATION

In this section, we introduce the gauge transformation

discussed in the main text on a Lagrangian level. The La-

grangian L(φ, φ̇) of a qubit in a potential U coupled to a
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linear (multimode) resonator is a function of the fluxes φ =
(φq, φ1, . . . , φN )T and the voltages proportional to φ̇. Here

the overdot denotes the time derivative. Using the capacitance

matrix C and the inverse of the inductance matrix M = L−1,

it can be written as

L(φ, φ̇) = 1
2
φ̇

T
Cφ̇ − 1

2
φT Mφ − U (φq ). (A1)

In Eq. (A1) the flux variable φq is distinguished from the

rest by the presence of the potential U (φq ). This allows

for a natural assignment of the flux variables to the qubit

and the resonator, respectively. We thus consider coordinate

transformations φ = T φ′ that preserve this structure and leave

the variable φq invariant. In its most general form, such a

transformation is given by

T =
(

1 0

t R

)

, (A2)

where R is an invertible matrix and t is an N-dimensional

vector.

We now show that the qubit cannot be decoupled from

the resonator while simultaneously retaining the structure of

Eq. (A1). To demonstrate this, we write C and M in the same

block form as Eq. (A2),

C =
(

κ cT

c Cr

)

, M =
(

µ mT

m Mr

)

. (A3)

Here κ is the qubit capacitance and µ is the qubit induc-

tance. Moreover, Cr and Mr are the capacitance and inverse

inductance matrices of the resonator. The vectors c and m

couple the flux and voltage variables of the qubit and the res-

onator. Under the transformation (A2), C and M transform as

C′ = T T CT and M ′ = T T MT , which yields the transformed

off-diagonal blocks c′ = Rc + RCrt and m′ = Rm + RMrt.

Therefore, in order for c′ and m′ to vanish at the same time,

the following equations have to be satisfied:

m − MrC
−1
r c = 0, (A4)

c − CrM
−1
r m = 0. (A5)

These equations can only be satisfied simultaneously if the

qubit and the resonator are physically decoupled, i.e., if c =
m = 0. The transformation (A2) therefore cannot be used to

completely decouple the qubit from the resonator. Neverthe-

less, we can choose coordinates such that the qubit is coupled

to the resonator only inductively or capacitively. To this end,

we fix t and introduce a gauge parameter η that linearly

interpolates between these two extremal cases

t = −
[

(1 − η)C−1
r c + ηM−1

r m
]

. (A6)

It can be easily verified that η = 0 results in a block-diagonal

capacitance matrix C′. The coupling is then completely induc-

tive and we call the corresponding gauge the flux gauge. On

the other hand, η = 1 block diagonalizes M ′, which results in

a purely capacitive coupling. We call the corresponding gauge

the charge gauge.

APPENDIX B: FULL HAMILTONIAN

Figure 1(a) in the main text shows a qubit in a potential U

coupled to a canonical Foster circuit consisting of a series of

N LC oscillators. With the choice of ground node depicted in

this figure, the Lagrangian is given in the flux gauge

L(φ, φ̇) =
C�φ̇2

q

2
−

φ2
q

2Lq

− U (φq )

+
N

∑

k=1

[

Ckφ̇
2
k

2
−

(φk − φq )2

2Lk

]

. (B1)

Here C� = Cq + C0 is the total capacitance of the qubit

to ground. We introduce a gauge parameter η by per-

forming the variable transformation (A2) discussed in

Appendix A. We use the specific t from Eq. (A6). For

the Lagrangian in Eq. (B1), the coupling vectors read

c = 0 and m = (−L−1
1 ,−L−1

2 , . . . ,−L−1
N )T . The capaci-

tance and inductance matrices of the resonator are di-

agonal. They are given by Cr = diag(C1,C2, . . . ,CN ) and

Mr = diag(L−1
1 , L−1

2 , . . . , L−1
N ). Performing the transforma-

tion yields

L
′(φ′, φ̇

′
) =

C�φ̇′2
q

2
−

φ′2
q

2Lq

− U (φ′
q )

+
N

∑

k=1

[

Ck (φ̇′
k + ηφ̇′

q )2

2
−

[φ′
k − (1 − η)φ′

q]2

2Lk

]

,

(B2)

where φ = T φ′. We define the conjugate momenta Q′
i = ∂L′

∂φ′
i

of the flux variables φ′ and perform a Legendre transformation

which yields the Hamiltonian H =
∑

i Q′
iφ̇

′
i − L′. To obtain a

quantum mechanical description, we promote the canonical

variables to operators φ′
i → φ̂i and Q′

i → Q̂i and impose the

canonical commutation relation [φ̂iQ̂ j] = ih̄δi j , where δi j is

the Kronecker delta. The total Hamiltonian H (η) = Hq +
Hr + V (η) can then be split into a qubit Hamiltonian Hq, a

resonator Hamiltonian Hr, and the interaction V with

Hq =
Q̂2

q

2C�

+
φ̂2

q

2Lq

+ U (φ̂q ), Hr =
N

∑

k=1

Q̂2
k

2Ck

+
φ̂2

k

2Lk

,

(B3a)

V (η) = −
N

∑

k=1

[

(1 − η)φ̂qφ̂k

Lk

+
ηQ̂qQ̂k

C�

]

+ (1 − η)2

N
∑

k=1

φ̂2
q

2Lk

+ η2

(
∑N

k=1 Q̂k

)2

2C�

. (B3b)

The interaction V in Eq. (B3b) is given in Eq. (1), where

the circumflexes over the operators have been omitted. Note

that the Hamiltonian H (η) is related to the Hamiltonian

H (η′) through the unitary transformation R = exp[−i(η′ −
η)φ̂q

∑

k Q̂k/h̄] such that R†H (η)R = H (η′). The difference

of H (η) − H (0) corresponds to a pseudopertubation of

Ref. [28].

APPENDIX C: SCHRIEFFER-WOLFF TRANSFORMATION

In this Appendix we perform a SW transformation to

derive the QRM (2). Similar to the main text, we define

the low-energy subspace of the qubit S = {|0〉, |1〉} and its
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orthogonal complement S⊥. Furthermore, we define the pro-

jector P = |0〉〈0| + |1〉〈1| onto S. The projector onto S⊥ is

then given by Q = 1 − P. The coupling between the sub-

spaces S and S⊥ is provided by PV Q. Performing a SW

transformation to block diagonalize H with respect to S and

S⊥ results in an effective Hamiltonian Heff =
∑K

j=0 H j [31].

The zeroth order is given by the projection of the uncoupled

Hamiltonian onto S,

H0 = PHqP + Hr = −h̄
ω

q

10

2
σ z + h̄

N
∑

k=1

ωka
†
k
ak . (C1)

Here h̄ω
q

10 is the energy difference between the ground state

and the first excited state of the qubit. Furthermore, we

have defined the frequencies ωk = 1/
√

LkCk and the bosonic

raising and lowering operators of the kth mode

φ̂n =
√

h̄Zk

2
(a†

k
+ ak ), (C2)

Q̂k = i

√

h̄

2Zk

(a†
k
− ak ), (C3)

where Zk =
√

Lk/Ck is the characteristic impedance of the

kth mode. The next order is given by the projection of the

interaction V onto S,

H1 = PV (η)P

= h̄

N
∑

k=1

[

(1 − η)g
φ

k
σ x(ak + a

†
k
) + ηg

Q

k
σ y(ak − a

†
k
)
]

−
(1 − η)α

2
σ z −

η2h̄

2C�

(

N
∑

k=1

a
†
k
− ak√
Zk

)2

, (C4)

where g
φ

k
= 〈1|φq|0〉

√
Zk/2h̄L2

k and g
Q

k
=

〈1|Qq|0〉/
√

2h̄ZkC
2
� . Furthermore, α = (〈1|φ2

q |1〉 −
〈0|φ2

q |0〉)
∑

n 1/Ln. The last two terms in Eq. (C4) are

diamagnetic renormalizations of the qubit and resonator

frequencies. If these terms are omitted, the first-order

effective Hamiltonian H0 + H1 is equal to the QRM (2).

For weak qubit-resonator coupling this is a reasonable

assumption.

APPENDIX D: FOSTER REPRESENTATION

The circuit shown in Fig. 1(b) can be mapped onto the

general Foster form of Fig. 1(a). Assuming a symmetric

coupling Cc1
= Cc2

= Cc, the capacitances and inductances

are given by the substitutions

Ck =
C2

c

Cc + Crk

, Lk =
Lrk

(Cc + Crk
)2

C2
c

, (D1)

FIG. 4. Standard deviation σ of the full spectrum and the effec-

tive Hamiltonian Heff to K th order. The QRM corresponds to K = 1

(blue). Moreover, K = 2 (red), K = 3 (green), and the exact SW

transformed Hamiltonian K = ∞ (purple) are shown. Additionally,

the norm ‖H2‖∗ of the first perturbative correction to HQRM is shown

(black dashed line). The parameters are the same as in Fig. 2.

with

C0 =
CcCr1

Cc + Cr1

(D2)

for the one-mode setup (dashed box) and

C0 = Cc

(

Cr1

Cc + Cr1

+
Cr2

Cc + Cr2

)

(D3)

for the two-mode setup.

APPENDIX E: DETAILS OF THE SINGLE

RESONATOR RESULTS

In this Appendix we show supporting data for one qubit

coupled to one resonator. Figure 4 shows the standard de-

viation σ (K ) =
√

(1/M )
∑M

i=0[Ei − ei(K )]2 for the first ten

states. Note that here ei(K ) denote the eigenvalues of the

SW transformed Hamiltonian Heff to K th order. In Fig. 4 the

parameters are the same as in Fig. 2. For all finite values of

K , the minimum of σ is at η ≈ 0, demonstrating that the flux

gauge is optimal in this case.

Furthermore, we see that adding higher-order terms to the

Rabi Hamiltonian mitigates the effect of the broken gauge

invariance. The deviation between the full and the effective

model becomes less sensitive to variations in η with increasing

order in the SW method. The exact SW transformation [27]

(purple solid line) results in a gauge invariant two-level de-

scription. Additionally, the norm of H2 is shown (black dashed

line). We observe a nonlinear increase towards chargelike

gauges, as expected from the discussion in Sec. III A. For K =
1 (blue solid line), we see a similar functional dependence on

η as in ‖H2‖∗, indicating that many of the corrections to HQRM

are already captured by H2.
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