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Abstract

Tracking of eye movements is an established measurement for many types of experimental paradigms.
More complex and lengthier visual stimuli have made algorithmic approaches to eye movement event
detection the most pragmatic option. A recent analysis revealed that many current algorithms are lack-
luster when it comes to data from viewing dynamic stimuli such as video sequences. Here we present an
event detection algorithm—built on an existing velocity-based approach—that is suitable for both static
and dynamic stimulation, and is capable of detecting saccades, post-saccadic oscillations, fixations, and
smooth pursuit events. We validated detection performance and robustness on three public datasets:
1) manually annotated, trial-based gaze trajectories for viewing static images, moving dots, and short
video sequences, 2) lab-quality gaze recordings for a feature length movie, and 3) gaze recordings acquired
under suboptimal lighting conditions inside the bore of a magnetic resonance imaging (MRI) scanner for
the same full-length movie. We found that the proposed algorithm performs on par or better compared
to state-of-the-art alternatives for static stimulation. Moreover, it yields eye movement events with bi-
ologically plausible characteristics on prolonged recordings without a trial structure. Lastly, algorithm
performance is robust on data acquired under suboptimal conditions that exhibit a temporally varying
noise level. These results indicate that the proposed algorithm is a robust tool with improved detec-
tion accuracy across a range of use cases. A cross-platform compatible implementation in the Python
programming language is available as free and open source software.
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Introduction

A spreading theme in cognitive neuroscience is to
use dynamic and natural stimuli as opposed to iso-
lated and distinct imagery (Matusz et al., 2019).
Using dynamic stimuli promises to observe the nu-
ances of cognition in a more natural environment.
Some interesting applications include the determi-
nation of neural response to changes in facial expres-
sion (Harris et al., 2014), understanding complex so-
cial interactions by using videos (Tikka et al., 2012)
and more untouched themes such as the underlying
processing of music (Toiviainen et al., 2014). In such
studies, an unobtrusive behavioral measurement is
required to quantify the relationship between stim-
ulus and response. Tracking the focus of partici-
pants’ gaze is a suitable, well established measure
that has been successfully employed in a variety of
studies ranging from the understanding of visual at-
tention (Liu and Heynderickx, 2011), memory (Han-
nula et al., 2010) and language comprehension (Gor-
don et al., 2006). Regardless of use case, the raw eye
tracking data (position coordinates) provided by eye
tracking devices are rarely used “as is”. Instead, in
order to disentangle different cognitive, occulomo-
tor, or perceptive states associated with different
types of eye movements, most research relies on the
classification of eye gaze data into distinct eye move-
ment event categories (Schutz et al., 2011). The
most feasible approach for doing this lies in the ap-
plication of appropriate event detection algorithms.

However, a recent comparison of algorithms found
that while many readily available algorithms for
eye movement classification performed well on data
from static stimulation or short trial-based acquisi-
tions with simplified moving stimuli, none worked
particularly well on data from complex natural dy-
namic stimulation, such as video clips, when com-
pared to human coders (Andersson et al., 2017).
And indeed, when we evaluated an algorithm by
Nyström and Holmqvist (2010), one of the winners
in the aforementioned comparison, on data from
prolonged stimulation (≈15 min) with a feature film,
we found the average and median durations of la-
beled fixations to exceed literature reports (e.g.,
Holmqvist et al., 2011; Dorr et al., 2010) by up
to a factor of two. Additionally, and in particular
for increasing levels of noise in the data, the algo-
rithm classified too few fixations, as also noted by
Friedman et al. (2018), because it discarded poten-

tial fixation events that contained artifacts such as
blinks. However, robust performance on noisy data
is of particular relevance in the context of “natural
stimulation”, as the ultimate natural stimulation is
the actual natural environment, and data acquired
outdoors or with mobile devices typically does not
match the quality achieved in dedicated lab setups.

Therefore our objective was to improve upon the
available eye movement detection and classification
algorithms, and develop a tool that performs ro-
bustly on data from dynamic natural stimulation,
without sacrificing detection accuracy for static and
simplified stimulation. Importantly, we aimed for
applicability to prolonged recordings that lack any
kind of trial structure, and exhibit periods of signal-
loss and non-stationary noise levels. In addition
to the event categories fixation, saccade, and post-
saccadic oscillation (PSO; sometimes termed “glis-
sade”), the algorithm had to support the detection
of smooth pursuit events, as emphasized by Ander-
sson et al. (2017). These are slow movements of
the eye during tracking of a moving target and are
routinely evoked by moving visual objects during
dynamic stimulation (Carl and Gellman, 1987). If
this type of eye movement is not properly detected
and labeled, erroneous fixation and saccade events
(which smooth pursuits would be classified into in-
stead) are introduced. Contemporary algorithms
rarely provide this functionality (but see e.g., Lars-
son et al., 2015; Komogortsev and Karpov, 2013, for
existing algorithms with smooth pursuit detection).

Here we introduce REMoDNaV (robust eye move-
ment detection for natural viewing), a novel tool
that aims to meet these objectives. It is built
on the aforementioned algorithm by Nyström and
Holmqvist (2010) (subsequently labeled NH) that
employs an adaptive approach to velocity based eye
movement event detection and classification. RE-
MoDNaV enhances NH with the use of robust statis-
tics, and a compartmentalization of prolonged time
series into short, more homogeneous segments with
more uniform noise levels. Furthermore, it adds
support for pursuit event detection. We evaluated
REMoDNaV on three different datasets from con-
ventional paradigms, and natural stimulation (high
and lower quality), and relate its performance to the
algorithm comparison by Andersson et al. (2017).
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Methods

Like NH, REMoDNaV is a velocity-based event de-
tection algorithm. Compared to dispersion-based
algorithms, these types of algorithms are less sus-
ceptible to noise and spatio-temporal precision, and
are thus applicable to a wide range of sampling fre-
quencies. Furthermore, any influence of biologically
implausible velocities and accelerations can be pre-
vented with the use of appropriate filters and thresh-
olds (Holmqvist et al., 2011).

The algorithm comprises two major steps: pre-
processing and event detection. A general overview
and pseudo-code are shown in Figure 1. The fol-
lowing sections detail individual analysis steps. For
each step relevant algorithm parameters are given
in parenthesis. Table 1 summarizes all parameters,
and lists their default values.

Preprocessing

The goal of data preprocessing is to compute a time
series of eye movement velocities on which the event
detection algorithm can be executed, while jointly
reducing non-movement-related noise in the data as
much as possible.

First, implausible spikes in the coordinate time
series are removed with a heuristic spike filter
(Stampe, 1993) (Figure 1A, 1). This filter is
standard in many eye tracking toolboxes and of-
ten used for preprocessing (e.g., Nyström and
Holmqvist, 2010). Data samples around signal
loss (e.g., eye blinks) can be nulled in order to
remove spurious movement signals (dilate nan,
min blink duration; Figure 1A, 2). Coordinate
time series are temporally filtered in two different
ways (Figure 1A, 3). A relatively large median fil-
ter (median filter length) is used to emphasize
long-distance saccades. This type of filtered data is
later used for a coarse segmentation of a time se-
ries into shorter intervals between major saccades.
Separately, data are also smoothed with a Savitzky-
Golay filter (savgol {length,polyord}). All event
detection beyond the localization of major saccades
for time series chunking is performed on this type
of filtered data.

After spike-removal and temporal filtering, move-
ment velocities are computed (Figure 1A, 4-5).
To disregard biologically implausible measurements,
a configurable maximum velocity (max vel) is

enforced—any samples exceeding this threshold are
replaced by this set value.

Event detection

Saccade velocity threshold

Except for a few modifications, REMoDNaV em-
ploys the adaptive saccade detection algorithm
proposed by Nyström and Holmqvist (2010),
where saccades are initially located by thresh-
olding the velocity time series by a critical
value. Starting from an initial velocity threshold
(velthresh startvelocity, termed PT1 in NH),
the critical value is determined adaptively by com-
puting the variance of sub-threshold velocities (V ),
and placing the new velocity threshold at:

PTn = V n−1 + F ×

√∑
(Vn−1 − V n−1)2

N − 1
(1)

where F determines how many standard deviations
above the average velocity the new threshold is lo-
cated. This procedure is repeated until it stabilizes
on a threshold velocity.

|PTn − PTn−1| < 1◦/sec (2)

REMoDNaV alters this algorithm by using ro-
bust statistics that are more suitable for the non-
normal distribution of velocities (Friedman et al.,
2018), such that the new threshold is computed by:

PTn = median(Vn−1) + F ×MAD(Vn−1) (3)

where MAD is the median absolute deviation, and
F is a scalar parameter of the algorithm.

Time series chunking

As the algorithm aims to be applicable to prolonged
recordings without an inherent trial structure and
inhomogeneous noise levels, the time series needs
to be split into shorter chunks to prevent the nega-
tive impact of sporadic noise flares on the aforemen-
tioned adaptive velocity thresholding procedure.

REMoDNaV implements this chunking by de-
termining a critical velocity on a median-filtered
(median filter length) time series comprising the
full duration of a recording (Figure 1D). Due to po-
tentially elevated noise levels, the resulting thresh-
old tends to overestimate an optimal threshold.
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SACC 1

SACC 2

LPSO

HPSO

(C) Event detection 
1) Calculate peak velocity threshold from entire data itera-
     tively (adapted from NH,  using robust statistics).
     Initial threshold: velthresh_startvelocity

2) Determine major saccades (SACC) from sorted velocity
     samples exceeding the final threshold
         - if ms frequency > max_initial_saccade_freq; stop
3) Detect saccade onset/offset and LPSOs/HPSOs for all 
     SACC (adapted from NH, with local velocity thresholds
     within saccade_context_window_length).
     PSOs are classified as HPSO or LPSO following the 
     definition of NH.
4) Segment data into saccade windows between ms.
5) Compute local velocity thresholds within SACC windows

6) Label saccade if
        - peak velocity > local velocity threshold, and
        - duration > min_saccade_duration, and
        - distance to ms > min_intersaccade_duration

7) Detect saccade onset/offset and PSOs as before
8) If unlabeled window > min_pursuit_duration
     Butterworth low-pass filter (lowpass_cutoff_freq)
9) Detect smooth pursuit peaks similarly to SACC detection,
     using a pursuit_velthresh

10) Compute pursuit onset/offset as saccade onset/offset
       procedure, using pursuit_velthresh

11) Label fixation if velocity < pursuit_velthresh

Iterative, global peak velocity estimation, adapted from NH

ISAC

SACC

ILPS
PURS

FIXA

Subsequent, iterative event detection between SACCs

(A) Preprocessing
1) Apply heuristic spike filter (Stampe, 1993)
2) Mask signal loss (opt): dilate_nan, min_blink_dir

3) Noise reduction (opt):
     - Median-filter (median_filter_length) 
     - Savitzky-Golay filter (savgol_length, savgol_polyord) 
4) Calculate velocity
         - if velocity > max_vel; trim sample to max_vel

5) Calculate acceleration

SACC 1

SACC 2

HPSO

LPSO

Default preprocessing on data sample from dynamic stimulation

(B)

(D) (E)

Figure 1: REMoDNaVworkflow. Optional steps and configurable parameters are in bold.
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Table 1: Exhaustive list of algorithm parameters, their default values, and units.

Name Description Value

Preprocessing (in order of application during processing)
px2deg size of a single (square) pixel no default [deg]
sampling rate temporal data sampling rate/frequency no default [Hz]
min blink duration missing data windows shorter than this duration will not

be considered for dilate nan

0.02 s

dilate nan duration for which to replace data by missing data mark-
ers on either side of a signal-loss window

0.01 s

median filter length smoothing median-filter size (for initial data chunking
only)

0.05 s

savgol length size of Savitzky-Golay filter for noise reduction 0.019 s
savgol polyord polynomial order of Savitzky-Golay filter for noise re-

duction
2

max vel maximum velocity threshold, will replace value with
maximum, and issue warning if exceeded to inform
about potentially inappropriate filter settings (default
value based on Holmqvist et al., 2011)

1000 deg/s

Event detection
min saccade duration minimum duration of a saccade event candidate 0.01 s
max pso duration maximum duration of a post-saccadic oscillation (glis-

sade) candidate
0.04 s

min fixation duration minimum duration of a fixation event candidate 0.04 s
min pursuit duration minimum duration of a pursuit event candidate 0.04 s
min intersaccade duration no saccade detection is performed in windows shorter

than twice this value, plus minimum saccade and PSO
duration

0.04 s

noise factor adaptive saccade onset threshold velocity is the median
absolute deviation of velocities in the window of inter-
est, times this factor (peak velocity threshold is twice
the onset velocity); increase for noisy data to reduce
false positives (Nyström and Holmqvist, 2010, equiva-
lent: 3.0)

5

velthresh startvelocity start value for adaptive velocity threshold algorithm
(Nyström and Holmqvist, 2010), should be larger than
any conceivable minimum saccade velocity

300 deg/s

max initial saccade freq maximum saccade frequency for initial detection of ma-
jor saccades, initial data chunking is stopped if this
frequency is reached (should be smaller than an ex-
pected (natural) saccade frequency in a particular con-
text), default based on literature reports of a natural,
free-viewing saccade frequency of ∼1.7 ±0.3 Hz during
a movie stimulus (Amit et al., 2017)

2 Hz

saccade context window length size of a window centered on any velocity peak for adap-
tive determination of saccade velocity thresholds (for
initial data chunking only)

1 s

lowpass cutoff freq cut-off frequency of a Butterworth low-pass filter applied
to determine drift velocities in a pursuit event candidate

4 Hz

pursuit velthresh fixed drift velocity threshold to distinguish periods of
pursuit from periods of fixation; higher than natural
ocular drift velocities during fixations (e.g., Goltz et al.,
1997; Cherici et al., 2012)

2 deg/s

5

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/619254doi: bioRxiv preprint first posted online Apr. 26, 2019; 

http://dx.doi.org/10.1101/619254
http://creativecommons.org/licenses/by/4.0/


Consequently, only periods of fastest eye movements
will exceed this threshold. All such periods of con-
secutive above-threshold velocities are weighted by
the sum of these velocities. Boundaries of time se-
ries chunks are determined by selecting such events
sequentially (starting with the largest sums), until a
maximum average frequency across the whole time
series is reached (max initial saccade freq). The
resulting chunks represent data intervals between
saccades of maximum magnitude in the respective
data.

Detection of saccades and post-saccadic
oscillations

Detection of these event types is identical to the
NH algorithm, only the data context and met-
rics for determining the velocity thresholds dif-
fer. For saccades that also represent time series
chunk boundaries (event label SACC), a context of 1 s
(saccade context window length) centered on the
peak velocity is used by default, for any other sac-
cade (event label ISAC) the entire time series chunk
represents that context (Figure 1E).

Peak velocity threshold and on/offset veloc-
ity threshold are then determined by equa-
tion 3 with F set to 2 × noise factor and
noise factor, respectively. Starting from a ve-
locity peak, the immediately preceding and the
following velocity minima that do not exceed
the on/offset threshold are located and used as
event boundaries. Qualifying events are re-
jected if they do not exceed a configurable min-
imum duration or violate the set saccade maxi-
mum proximity criterion (min saccade duration,
min intersaccade duration).

As in NH, post-saccadic oscillations are events
that immediately follow a saccade, where the veloc-
ity exceeds the saccade velocity threshold within a
short time window (max pso duration). REMoD-
NaV distinguishes low-velocity (event label LPSO

for chunk boundary event, ILPS otherwise) and
high-velocity oscillations (event label HPSO or IHPS),
where the velocity exceeds the saccade onset or peak
velocity threshold, respectively.

Pursuit and fixation detection

For all remaining, unlabeled time series seg-
ments that are longer than a minimum duration

(min fixation duration), velocities are low-pass
filtered (Butterworth, lowpass cutoff freq). Any
segments exceeding a minimum velocity thresh-
old (pursuit velthresh) are classified as pursuit
(event label PURS). Pursuit on/offset detection uses
the same approach as that for saccades: search
for local minima preceding and following the above
threshold velocities. Any remaining segment that
does not qualify as a pursuit event is classified as a
fixation (event label FIXA).

Operation

REMoDNaV is free and open-source software, writ-
ten in the Python language and released under the
terms of the MIT license. In addition to the Python
standard library it requires the Python pack-
ages NumPy (Oliphant, 2006), Matplotlib (Hunter,
2007), statsmodels (Seabold and Perktold, 2010),
and SciPy (Jones et al., 2001–) as software depen-
dencies. Furthermore, DataLad (Halchenko et al.,
2013–), and Pandas (McKinney et al., 2010) have to
be available to run the test battery. REMoDNaV it-
self, and all software dependencies are available on
all major operating systems. There are no particu-
lar hardware requirements for running the software
other than sufficient memory to load and process
the data.

A typical program invocation looks like

remodnav <inputfile> <outputfile> \

<px2deg> <samplingrate>

where <inputfile> is the name of a tab-separated-
value (TSV) text file with one gaze coordinate sam-
ple per line. An input file can have any number of
columns, only the first two columns are read and
interpreted as X and Y coordinates. The second
argument <outputfile> is the file name of a BIDS-
compliant (Gorgolewski et al., 2016) TSV text file
that will contain a report on one detected eye move-
ment event per line, with onset and offset time, on-
set and offset coordinates, amplitude, peak velocity,
median velocity and average velocity. The remain-
ing arguments are the only two mandatory parame-
ters: the conversion factor from pixels to visual de-
grees, i.e., the visual angle of a single (square) pixel
(<px2deg> in deg), and the temporal sampling rate
(<sampling rate> in Hz).

All additionally supported parameters (sorted by
algorithm step) with their description and default
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value, are listed in Table 1. While the required user
input is kept minimal, the number of configurable
parameters is purposefully large to facilitate optimal
parameterization for data with specific properties.
Besides the list of detected events, a visualization
of the detection results, together with a time course
of horizontal and vertical gaze position, and veloc-
ities is provided for illustration and initial quality
assessment of algorithm performance on each input
data file.

Validation analyses

The selection of datasets and analyses for validat-
ing algorithm performance was guided by three ob-
jectives: 1) compare to other existing solutions;
2) demonstrate plausible results on data from pro-
longed gaze coordinate recordings during natural
viewing; and 3) illustrate result robustness on lower-
quality data. The following three sections each in-
troduce a dataset and present the validation results
for these objectives. All analysis presented here are
performed using default parameters (Table 1), with
no dataset-specific tuning other than the built-in
adaptive behavior.

Algorithm comparison

Presently, Andersson et al. (2017) represents the
most comprehensive comparative study on eye
movement detection algorithms. Moreover, the
dataset employed in that study was made publicly
available. Consequently, evaluating REMoDNaV
performance on these data and using their metrics
offers a straightforward approach to relate this new
development to alternative solutions.

The dataset provided by Andersson et al. (2017)1

consists of monocular eye gaze data produced from
viewing stimuli from three distinct categories—
images, moving dots and videos. The data release
contains gaze coordinate time series (500 Hz sam-
pling rate), and metadata on stimulus size and view-
ing distance. Importantly, each time point was man-
ually classified by two expert human raters as one of
six event categories: fixation, saccade, PSO, smooth
pursuit, blink and undefined (a sample that did not
fit any other category). A minor labeling mistake

1github.com/richardandersson/EyeMovementDetector
Evaluation

reported in Zemblys et al. (2018) was fixed prior to
this validation analysis.

For each stimulus category, we computed the pro-
portion of misclassifications per event type, compar-
ing REMoDNaV to each of the human coders, and,
as a baseline measure, the human coders against
each other. A time point was counted as misclassi-
fied if the two compared classifications did not as-
sign the same label. We limited this analysis to
all time points that were labeled as fixation, sac-
cade, PSO, or pursuit by any method, hence ignor-
ing the rarely used NaN/blinks or “undefined” cat-
egory. For a direct comparison with the results in
Andersson et al. (2017), the analysis was repeated
while also excluding samples labeled as pursuit. Ta-
ble 2 shows the misclassification rates for all pair-
wise comparisons, in all stimulus types. In com-
parison to the NH algorithm, after which the pro-
posed work was modelled, REMoDNaVperformed
consistently better (32/93/70% average misclassifi-
cation for NH, vs. 6.5/10.8/ 9.1% worst misclassi-
fication for REMoDNaV in categories images, dots,
and videos). Compared to all ten algorithms evalu-
ated in Andersson et al. (2017), REMoDNaV ex-
hibits the lowest misclassification rates across all
stimulus categories. When taking smooth pursuit
events into account, the misclassification rate natu-
rally increases, but remains comparably low. Impor-
tantly, it still exceeds the performance of all algo-
rithms tested in Andersson et al. (2017) in the dots
and video category, and performs among the best
in the images category. Additionally, both with and
without smooth pursuit, REMoDNaVs performance
exceeds also that of a recent deep neural network
trained specifically on video clips (Startsev et al.,
2018, compare Table 7: 34% misclassification ver-
sus 31.5% for REMoDNaV).

Figure 2 shows confusion patterns for a compar-
ison of algorithm classifications with human label-
ing. While REMoDNaV does not achieve a labeling
similarity that reaches the human inter-rater agree-
ment, it still performs well. In particular, the rel-
ative magnitude of agreement with each individual
human coder for fixations, saccades, and PSOs, re-
sembles the agreement between the human coders.
Classification of smooth pursuits is consistent with
human labels for the categories moving dots, and
videos. However, there is a substantial confusion of
fixation and pursuit for the static images. In a real-
world application of REMoDNaV, pursuit detection
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Table 2: Proportion of samples in each stimulus cate-
gory classified in disagreement between human coders
(MN, RA) and the REMoDNaV algorithm (AL). The
MC (misclassification) column lists proportions consid-
ering all four event categories (fixation, saccade, PSO,
pursuit), while the w/oP (without pursuit) column ex-
cludes pursuit events for a direct comparison with Ander-
sson et al. (2017, Tables 8-10). The remaining columns
show the percentage of labels assigned to incongruent
time points by each rater (deviation of their sum from
100% is due to rounding).

Images

Comp MC w/oP Coder Fix Sac PSO SP

MN-RA 6.1 3.0 MN 70 9 21 0
— — — RA 13 15 20 53
MN-AL 23.1 6.5 MN 86 2 11 2
— — — AL 5 13 6 75
RA-AL 22.8 6.4 RA 77 3 11 9
— — — AL 13 13 6 68

Dots

Comp MC w/oP Coder Fix Sac PSO SP

MN-RA 10.7 4.2 MN 11 10 9 71
— — — RA 64 7 6 23
MN-AL 18.6 8.2 MN 9 5 8 78
— — — AL 77 6 2 15
RA-AL 22.8 10.8 RA 28 4 6 61
— — — AL 59 7 2 31

Videos

Comp MC w/oP Coder Fix Sac PSO SP

MN-RA 18.5 4.0 MN 75 3 8 15
— — — RA 16 4 3 77
MN-AL 31.5 7.9 MN 57 1 6 36
— — — AL 36 5 3 55
RA-AL 28.5 9.1 RA 38 3 5 55
— — — AL 53 6 5 35

could be disabled (by setting a high pursuit velocity
threshold) for data from static images, if the occur-
rence of pursuit events can be ruled out a priori. For
this evaluation, however, no such intervention was
made.

In order to further rank the performance of the
proposed algorithm with respect to the ten algo-
rithms studied in Andersson et al. (2017), we fol-
lowed their approach to compute root mean square
deviations (RMSD) from human labels for event du-
ration distribution characteristics (mean and stan-
dard deviation of durations, plus number of events)
for each stimulus category (images, dots, videos)
and event type (fixations, saccades, PSOs, pur-
suits). This measure represents a scalar distribu-
tion dissimilarity score that can be used as an addi-
tional comparison metric of algorithm performance
that focuses on overall number and durations of de-
tected events, instead of sample-by-sample misclas-
sification. The RMSD measure has a lower bound of
0.0 (identical to the average of both human raters),
with higher values indicating larger differences (for
detail information on the calculation of this metric
see Andersson et al., 2017).

Table 3 reproduces Andersson et al. (2017, Ta-
bles 3-6), and the RMSD calculation for the added
rows on REMoDNaV is based on the scores for the
human raters given in these original tables. As ac-
knowledged by the authors, the absolute value of the
RMSD scores is not informative due to scaling with
respect to the respective maximum value of each
characteristic. Therefore, we converted RMSDs for
each algorithm and event type into zero-based ranks
(lower is more human-like).

The LNS algorithm (Larsson et al., 2013) was
found to have the most human-like performance
for saccade and PSO detection in Andersson et al.
(2017). REMoDNaV performs comparable to LNS
for both event types (saccades: 2.0 vs. 3.3; PSOs:
2.3 vs. 2.0, mean rank across stimulus categories for
LNS and REMoDNaV, respectively).

Depending on the stimulus type, different algo-
rithms performed best for fixation detection. NH
performed best for images and videos, but worst for
moving dots. REMoDNaV outperforms all other
algorithms in the dots category, and achieves rank
5 and 6 (middle range) for videos and images, re-
spectively. Across all stimulus and event categories,
REMoDNaV achieves a mean ranking of 2.9, and a
mean ranking of 3.2 when not taking smooth pursuit
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Figure 2: Confusion patterns for pairwise eye movement classification comparison of both human raters (MN and
RA; Andersson et al., 2017) and the REMoDNaV algorithm (AL) for gaze recordings from stimulation with static
images (left column), moving dots (middle column), and video clips (right column). All matrices present gaze
sample based Jaccard indices (JI; Jaccard, 1901). Consequently, the diagonals depict the fraction of time points
labeled congruently by both raters in relation to the number of timepoints assigned to a particular event category
by any rater.
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into account.

Taken together, REMoDNaV yields classification
results that are, on average, more human-like than
any other algorithm tested on the dataset and met-
rics put forth by Andersson et al. (2017). In partic-
ular, its performance largely equals or exceeds that
of the original NH algorithm. NH outperforms it
only for fixation detection in the image and video
category, but in these categories REMoDNaV also
classifies comparatively well. These results are an
indication that the changes to the NH algorithm
proposed here to improve upon its robustness are
not detrimental to its performance on data from
conventional paradigms and stimuli.

Prolonged natural viewing

Given that REMoDNaV yielded plausible results for
the ”video” stimulus category data in the Andersson
et al. (2017) dataset (Figure 2, and Table 3, right
columns), we determined whether it is capable of
analyzing data from dynamic stimulation without a
trial structure.

As a test dataset we used publicly available eye
tracking data from the studyforrest.org project,
where 15 participants were recorded watching a
feature-length (≈2 h) movie in a laboratory setting
(Hanke et al., 2016). Eye movements were mea-
sured by an Eyelink 1000 with a standard desktop
mount (software version 4.51; SR Research Ltd.,
Mississauga, Ontario, Canada) and a sampling rate
of 1000 Hz. The movie stimulus was presented on
a 522 × 294 mm LCD monitor at a resolution of
1920×1280 px and a viewing distance of 85 cm. Par-
ticipants watched the movie in eight approximately
15 min long segments, with measurement recalibra-
tion before every segment.

As no manual eye movement event labeling ex-
ists for these data, algorithm evaluation was lim-
ited to a comparison of marginal distributions and
well-known properties, such as the log-log-linear re-
lationship of saccade amplitude and saccade peak
velocity (Bahill et al., 1975). Figure 3 (top row) de-
picts this main sequence relationship. Additionally,
Figure 4 (top row) shows duration histograms for
all four event types across all participants. Shapes
and locations of these distributions match previous
reports in the literature, such as a strong bias to-
wards short (less than 500 ms) fixations for dynamic
stimuli (Dorr et al., 2010, Fig. 3), peak number of

PSOs with durations between 10-20 ms (Nyström
and Holmqvist, 2010, Fig. 11), and a non-Gaussian
saccade duration distribution located below 100 ms
(Nyström and Holmqvist, 2010, Fig. 8, albeit for
static scene perception).

Overall, the presented summary statistics suggest
that REMoDNaV is capable of detecting eye move-
ments with plausible characteristics, in prolonged
gaze recordings without a trial structure. A visu-
alization of such a detection result is depicted in
Figure 5 (top row).

Lower-quality data

An explicit goal for REMoDNaV development was
robust performance on lower-quality data. While
lack of quality cannot be arbitrarily compensated
and will inevitably lead to misses in eye movement
detection, it is beneficial for any further analysis if
operation on noisy data does not introduce unex-
pected event property biases.

In order to investigate noise-robustness we ran
REMoDNaV on another publicly available dataset
from the studyforrest.org project, where 15 different
participants watched the exact same movie stim-
ulus, but this time while lying on their back in
the bore of an MRI scanner (Hanke et al., 2016).
These data were recorded with a different Eyelink
1000 (software version 4.594) equipped with an MR-
compatible telephoto lens and illumination kit (SR
Research Ltd., Mississauga, Ontario, Canada) at
1000 Hz during simultaneous fMRI acquisition. The
movie was presented at a viewing distance of 63 cm
on a 26 cm (1280×1024 px) LCD screen in 720p res-
olution at full width, yielding a substantially smaller
stimulus size, compared to the previous stimulation
setup. The eye tracking camera was mounted out-
side the scanner bore and recorded the participants’
left eye at a distance of about 100 cm. Compared
to the lab-setup, physical limitations of the scanner
environment, and sub-optimal infrared illumination
led to substantially noisier data, as evident from a
generally higher amount of data loss and a larger
spatial uncertainty (Hanke et al., 2016, Technical
Validation). An example of the amplified and vari-
able noise pattern is shown in Figure 5 (bottom row,
black lines). Except for the differences in stimula-
tion setup, all other aspects of data acquisition, eye
tracker calibration, and data processing were iden-
tical to the previous dataset.
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Table 3: Comparison of event duration statistics (mean, standard deviation, and number of events) for image, dot,
and video stimuli. This table reproduces Andersson et al. (2017, Tables 3-6), and root-mean-square-deviations
(RMSD) from human raters are shown for fixations, saccades, PSOs, and pursuit as zero-based ranks (rank zero is
closest to the average of the two human raters). Rows for REMoDNaV have been added.

Fixations

Images Dots Videos
Algorithm Mean SD # rank Mean SD # rank Mean SD # rank

MN 248 271 380 1 161 30 2 1 318 289 67 0
RA 242 273 369 0 131 99 13 0 240 189 67 1

CDT 397 559 251 10 60 127 165 9 213 297 211 7
EM - - - - - - - - - - - -
IDT 399 328 242 7 323 146 8 5 554 454 48 8
IKF 174 239 513 5 217 184 72 6 228 296 169 4

IMST 304 293 333 3 268 140 12 3 526 825 71 10
IHMM 133 216 701 8 214 286 67 8 234 319 194 6
IVT 114 204 827 9 203 282 71 7 202 306 227 9
NH 258 299 292 2 380 333 30 10 429 336 83 2
BIT 209 136 423 4 189 113 67 4 248 215 170 3
LNS - - - - - - - - - - - -

REMoDNaV 187 132 426 6 116 65 43 2 147 107 144 5

Saccades

Images Dots Videos
Algorithm Mean SD # rank Mean SD # rank Mean SD # rank

MN 30 17 376 0 23 10 47 0 26 13 116 0
RA 31 15 372 1 22 11 47 1 25 12 126 1

CDT - - - - - - - - - - - -
EM 25 22 787 9 17 14 93 8 20 16 252 6
IDT 35 15 258 3 32 14 10 7 24 53 41 9
IKF 62 37 353 10 60 26 29 10 55 20 107 8

IMST 17 10 335 6 13 5 18 6 18 10 76 4
IHMM 48 26 368 8 41 17 27 9 42 18 109 7
IVT 41 22 373 5 36 14 28 4 36 16 112 5
NH 50 20 344 7 43 16 42 5 44 18 1104 10
BIT - - - - - - - - - - - -
LNS 29 12 390 2 26 11 53 2 28 12 122 2

REMoDNaV 39 20 388 4 30 13 40 3 33 15 118 3

Post-saccadic oscillations

Images Dots Videos
Algorithm Mean SD # rank Mean SD # rank Mean SD # rank

MN 21 11 312 1 15 5 33 0 20 11 97 1
RA 21 9 309 0 15 8 28 1 17 8 89 2
NH 28 13 237 4 24 12 17 4 28 13 78 4
LNS 25 9 319 2 20 9 31 2 24 10 87 3

REMoDNaV 19 8 277 3 18 8 14 3 18 8 86 0

Pursuit

Images Dots Videos
Algorithm Mean SD # rank Mean SD # rank Mean SD # rank

MN 363 187 3 1 375 256 37 1 521 347 50 1
RA 305 184 16 0 378 364 33 0 472 319 68 0

REMoDNaV 197 73 118 2 440 385 34 2 314 229 97 211
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Figure 3: Main sequence of eye movement events during one 15 minute sequence of the movie (segment 2) for lab
(top), and MRI participants (bottom). Data across all participants per dataset is shown on the left, and data for
a single exemplary participant on the right.

Figure 4: Comparison of eye movement event duration distributions for the high-quality lab sample (top row),
and the lower quality MRI sample (bottom row) across all participants (each N = 15), and the entire duration of
the same feature-length movie stimulus. All histograms depict absolute number of events. Visible differences are
limited to an overall lower number of events, and fewer long saccades for the MRI sample. These are attributable to
a higher noise level and more signal loss (compare Hanke et al., 2016, Fig. 4b) in the MRI sample, and to stimulus
size differences (23.75 ° MRI vs. 34 ° lab).
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Figure 5: Exemplary eye movement detection results for the same 10 s excerpt of a movie stimulus for a single
participant in the high quality lab sample (top), and in the lower quality MRI sample (bottom). The plots show
filtered gaze coordinates (black), computed velocity time series (gray) overlayed on the eye movement event seg-
mentation with periods of fixation (green), pursuit (beige), saccades (blue), and high/low-velocity post-saccadic
oscillations (dark/light purple). The variable noise level, and prolonged signal loss (white) visible in the MRI sam-
ple represent a challenge for algorithms. REMoDNaV uses an adaptive approach that determines major saccade
events first, and subsequently tunes the velocity threshold to short time windows between these events. Figures like
this accompany the program output to facilitate quality control and discovery of inappropriate preprocessing and
detection parameterization.

We performed the identical analysis as before, in
order to compare performance between a high and
lower-quality data acquisition. Figures 3-5 depict
the results for the lab-quality dataset, and the MRI-
scanner dataset in the top and bottom rows, respec-
tively.

Overall, the detection results exhibit strong sim-
ilarity, despite the potential behavioral impact of
watching a movie while lying on their back and
looking upwards on the participants, or the well
known effect of increasing fatigue during a two-hour
session in an MRI-scanner. In particular, saccade
amplitude and peak velocity exhibit a clear main-
sequence relationship that resembles that found for
the lab acquisition (Figure 3). Duration distribu-
tions for fixations, PSOs, and pursuits are strikingly
similar between the two datasets (Figure 4), except
for a generally lower number of detected events for
the MRI experiment, which could be explained by
the higher noise level and fraction of signal loss.
There is a notable difference regarding the saccade
duration distributions, with a bias towards shorter
saccades in the MRI dataset. This effect may be
attributable to the differences in stimulus size (30%
smaller in the MRI environment).

Conclusion

Based on the adaptive, velocity-based algorithm for
fixation, saccade, and PSO detection by Nyström
and Holmqvist (2010), we have developed an im-
proved algorithm that, in contrast to the original,
performs robustly on prolonged recordings with dy-
namic stimulation, without a trial structure and
variable noise levels, and also supports the detection
of smooth pursuit events. Through a series of vali-
dation analyses we have shown that its performance
is comparable to or better than ten other contempo-
rary detection algorithms, and that plausible detec-
tion results are achieved on high and lower quality
data. These aspects of algorithm capabilities and
performance suggest that REMoDNaV is a state-
of-the-art tool for eye movement detection with par-
ticular relevance for emerging complex, naturalistic
data collections paradigms, such as mobile or out-
door aquisition, or the combination of eye tracking
and functional MRI in simultaneous measurements.

The proposed algorithm is rule-based, hence can
be applied to data without prior training, apart
from the adaptive estimation of velocity thresholds.
This aspect distinguishes it from other recent devel-
opments based on deep neural networks (Startsev
et al., 2018), and machine-learning in general (Zem-
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blys et al., 2018). Such algorithms tend to require
substantial amount of (labeled) training data, which
can be a critical limitation in the context of a re-
search study. However, in its present form REMoD-
NaV cannot be used for real-time data analysis, as
its approach for time series chunking is based on
an initial sorting of major saccade events across the
entire time series.

Just as Andersson et al. (2017), we considered
human raters as a gold standard reference for event
detection when evaluating algorithms. The implica-
tions of the results presented herein are hence only
valid if this assumption is warranted. Some authors
voice concerns (e.g., Komogortsev et al., 2010),
regarding potential biases that may limit general-
izability. Nevertheless, human-made event labels
are a critical component of algorithm validation, as
pointed out by Hooge et al. (2018).

REMoDNaV aims to be a readily usable tool,
available as cross platform compatible, free and
open source software, with a simple command line
interface and carefully chosen default settings. How-
ever, as evident from numerous algorithm evalua-
tions (e.g., Andersson et al., 2017; Larsson et al.,
2013; Zemblys et al., 2018; Komogortsev et al.,
2010) different underlying stimulation, and data
characteristics can make certain algorithms or pa-
rameterizations more suitable than others for par-
ticular applications. The provided implementation
of the REMoDNaV algorithm (Hanke et al., 2019)
acknowledges this fact by exposing a range of pa-
rameters through its user interface that can be al-
tered in order to tune the detection for a particular
use case.

The latest version of REMoDNaV can be in-
stalled from PyPi2 via pip install remodnav.
The source code of the software can be found on
Github3. All reports on defects and enhancement
can be submitted there. The analysis code under-
lying all results and figures presented in this paper,
as well as the LATEX sources, are located in another
Github repository4. All required input data, from
Andersson et al. (2017) and the studyforrest.org
project, are referenced in this repository at precise
versions as DataLad5 subdatasets, and can be ob-

2https://pypi.org/project/remodnav
3https://github.com/psychoinformatics-de/remodnav
4https://github.com/psychoinformatics-de/paper-

remodnav/
5http://datalad.org

tained on demand.
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