000867838 001__ 867838
000867838 005__ 20221126155024.0
000867838 0247_ $$2Handle$$a2128/23607
000867838 037__ $$aFZJ-2019-06440
000867838 041__ $$aEnglish
000867838 1001_ $$0P:(DE-Juel1)156619$$aBaumeister, Paul F.$$b0$$eCorresponding author
000867838 1112_ $$aPlatform for Advanced Scientific Computing Conference$$cZurich$$d2019-06-12 - 2019-06-14$$gPASC19$$wSwitzerland
000867838 245__ $$aA Spherical Harmonic Oscillator Basis for Reduced Bandwidth Requirements
000867838 260__ $$c2019
000867838 3367_ $$033$$2EndNote$$aConference Paper
000867838 3367_ $$2BibTeX$$aINPROCEEDINGS
000867838 3367_ $$2DRIVER$$aconferenceObject
000867838 3367_ $$2ORCID$$aCONFERENCE_POSTER
000867838 3367_ $$2DataCite$$aOutput Types/Conference Poster
000867838 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1669385827_20906$$xAfter Call
000867838 502__ $$cETH Zurich
000867838 520__ $$aLarge scale electronic structure calculations require modern HPC resources and, as important, mature HPC applications that can make efficient use of those. Real-space grid-based applications of Density Functional Theory using the Projector Augmented Wave method can give the same accuracy as DFT codes relying on a plane wave basis set but exhibit an improved scalability on distributed memory machines. The projection operations of the PAW Hamiltonian are known to be the most performance critical part due to their limitation by the available memory bandwidth. We investigate on the usability of a 3D factorizable basis of Hermite functions for the atomic PAW projector functions that allows to reduce and nearly to remove the bandwidth requirements for the grid representation of the projector functions in projection operations. This increases the fraction of exploitable floating-point operations on modern vectorized many-core architectures, like GPUs, by raising the arithmetic intensity of such operations.
000867838 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000867838 536__ $$0G:(DE-Juel1)SDLQM$$aSimulation and Data Laboratory Quantum Materials (SDLQM) (SDLQM)$$cSDLQM$$fSimulation and Data Laboratory Quantum Materials (SDLQM)$$x1
000867838 8564_ $$uhttps://juser.fz-juelich.de/record/867838/files/20190613_SHO_Poster.pdf$$yOpenAccess
000867838 8564_ $$uhttps://juser.fz-juelich.de/record/867838/files/20190613_SHO_Poster.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867838 909CO $$ooai:juser.fz-juelich.de:867838$$pdriver$$popenaire$$pVDB$$popen_access
000867838 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156619$$aForschungszentrum Jülich$$b0$$kFZJ
000867838 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000867838 9141_ $$y2019
000867838 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867838 920__ $$lyes
000867838 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000867838 980__ $$aposter
000867838 980__ $$aVDB
000867838 980__ $$aI:(DE-Juel1)JSC-20090406
000867838 980__ $$aUNRESTRICTED
000867838 9801_ $$aFullTexts