000867849 001__ 867849
000867849 005__ 20210130003924.0
000867849 037__ $$aFZJ-2019-06451
000867849 041__ $$aEnglish
000867849 1001_ $$0P:(DE-Juel1)156619$$aBaumeister, Paul F.$$b0$$eCorresponding author
000867849 1112_ $$aQuantum Theory of Materials seminar (PGI-1/IAS-1)$$cJülich$$d2019-06-05 - 2019-06-05$$gPGI-1$$wGermany
000867849 245__ $$aA Spherical Harmonic Oscillator Basis for the Projector Augmented Wave Method
000867849 260__ $$c2019
000867849 3367_ $$2DRIVER$$alecture
000867849 3367_ $$031$$2EndNote$$aGeneric
000867849 3367_ $$2BibTeX$$aMISC
000867849 3367_ $$0PUB:(DE-HGF)17$$2PUB:(DE-HGF)$$aLecture$$blecture$$mlecture$$s1576483547_30947$$xOther
000867849 3367_ $$2ORCID$$aLECTURE_SPEECH
000867849 3367_ $$2DataCite$$aText
000867849 520__ $$aMany implementations of Density Functional Theory (DFT) using the Projector Augmented Wave method (PAW) represent the localised projector functions on real-space grids. The projection operations of the PAW Hamiltonian are a computational bottleneck due to their limitation by the available memory bandwidth. We investigate on the utility of a 3D factorisable basis of Hermite functions for the localised PAW projector functions which allows to reduce the bandwidth requirements for the grid representation of the projector functions in projection operations. Additional on-the-fly sampling of the 1D basis functions eliminates the memory transfer almost entirely. With this, the efficiency for projection operations on modern vectorised many-core architectures can be increased, which we show for GPUs. Finally, we suggest a PAW generation scheme adjusted to analytically given projector functions.
000867849 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000867849 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x1
000867849 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x2
000867849 7001_ $$0P:(DE-Juel1)131010$$aTsukamoto, Shigeru$$b1
000867849 909CO $$ooai:juser.fz-juelich.de:867849$$pVDB
000867849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156619$$aForschungszentrum Jülich$$b0$$kFZJ
000867849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131010$$aForschungszentrum Jülich$$b1$$kFZJ
000867849 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000867849 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x1
000867849 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x2
000867849 9141_ $$y2019
000867849 920__ $$lyes
000867849 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000867849 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000867849 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x2
000867849 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000867849 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x4
000867849 980__ $$alecture
000867849 980__ $$aVDB
000867849 980__ $$aI:(DE-Juel1)JSC-20090406
000867849 980__ $$aI:(DE-Juel1)PGI-1-20110106
000867849 980__ $$aI:(DE-Juel1)IAS-1-20090406
000867849 980__ $$aI:(DE-82)080009_20140620
000867849 980__ $$aI:(DE-82)080012_20140620
000867849 980__ $$aUNRESTRICTED