001     867849
005     20210130003924.0
037 _ _ |a FZJ-2019-06451
041 _ _ |a English
100 1 _ |a Baumeister, Paul F.
|0 P:(DE-Juel1)156619
|b 0
|e Corresponding author
111 2 _ |a Quantum Theory of Materials seminar (PGI-1/IAS-1)
|g PGI-1
|c Jülich
|d 2019-06-05 - 2019-06-05
|w Germany
245 _ _ |a A Spherical Harmonic Oscillator Basis for the Projector Augmented Wave Method
260 _ _ |c 2019
336 7 _ |a lecture
|2 DRIVER
336 7 _ |a Generic
|0 31
|2 EndNote
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a Lecture
|b lecture
|m lecture
|0 PUB:(DE-HGF)17
|s 1576483547_30947
|2 PUB:(DE-HGF)
|x Other
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Text
|2 DataCite
520 _ _ |a Many implementations of Density Functional Theory (DFT) using the Projector Augmented Wave method (PAW) represent the localised projector functions on real-space grids. The projection operations of the PAW Hamiltonian are a computational bottleneck due to their limitation by the available memory bandwidth. We investigate on the utility of a 3D factorisable basis of Hermite functions for the localised PAW projector functions which allows to reduce the bandwidth requirements for the grid representation of the projector functions in projection operations. Additional on-the-fly sampling of the 1D basis functions eliminates the memory transfer almost entirely. With this, the efficiency for projection operations on modern vectorised many-core architectures can be increased, which we show for GPUs. Finally, we suggest a PAW generation scheme adjusted to analytically given projector functions.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 1
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 2
700 1 _ |a Tsukamoto, Shigeru
|0 P:(DE-Juel1)131010
|b 1
909 C O |o oai:juser.fz-juelich.de:867849
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156619
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131010
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 4
980 _ _ |a lecture
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21