000867884 001__ 867884
000867884 005__ 20240712113119.0
000867884 0247_ $$2doi$$a10.1039/C7CP08535D
000867884 0247_ $$2ISSN$$a1463-9076
000867884 0247_ $$2ISSN$$a1463-9084
000867884 0247_ $$2altmetric$$aaltmetric:32620695
000867884 0247_ $$2pmid$$apmid:29479588
000867884 0247_ $$2WOS$$aWOS:000434246300002
000867884 037__ $$aFZJ-2019-06486
000867884 082__ $$a540
000867884 1001_ $$00000-0002-8260-4793$$aKoettgen, Julius$$b0$$eCorresponding author
000867884 245__ $$aUnderstanding the ionic conductivity maximum in doped ceria: trapping and blocking
000867884 260__ $$aCambridge$$bRSC Publ.$$c2018
000867884 3367_ $$2DRIVER$$aarticle
000867884 3367_ $$2DataCite$$aOutput Types/Journal article
000867884 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619163261_2073
000867884 3367_ $$2BibTeX$$aARTICLE
000867884 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867884 3367_ $$00$$2EndNote$$aJournal Article
000867884 520__ $$aMaterials with high oxygen ion conductivity and low electronic conductivity are required for electrolytes in solid oxide fuel cells (SOFC) and high-temperature electrolysis (SOEC). A potential candidate for the electrolytes, which separate oxidation and reduction processes, is rare-earth doped ceria. The prediction of the ionic conductivity of the electrolytes and a better understanding of the underlying atomistic mechanisms provide an important contribution to the future of sustainable and efficient energy conversion and storage. The central aim of this paper is the detailed investigation of the relationship between defect interactions at the microscopic level and the macroscopic oxygen ion conductivity in the bulk of doped ceria. By combining ab initio density functional theory (DFT) with Kinetic Monte Carlo (KMC) simulations, the oxygen ion conductivity is predicted as a function of the doping concentration. Migration barriers are analyzed for energy contributions, which are caused by the interactions of dopants and vacancies with the migrating oxygen vacancy. We clearly distinguish between energy contributions that are either uniform for forward and backward jumps or favor one migration direction over the reverse direction. If the presence of a dopant changes the migration energy identically for forward and backward jumps, the resulting energy contribution is referred to as blocking. If the change in migration energy due to doping is different for forward and backward jumps of a specific ionic configuration, the resulting energy contributions are referred to as trapping. The influence of both effects on the ionic conductivity is analyzed: blocking determines the dopant fraction where the ionic conductivity exhibits the maximum. Trapping limits the maximum ionic conductivity value. In this way, a deeper understanding of the underlying mechanisms determining the influence of dopants on the ionic conductivity is obtained and the ionic conductivity is predicted more accurately. The detailed results and insights obtained here for doped ceria can be generalized and applied to other ion conductors that are important for SOFCs and SOECs as well as solid state batteries.
000867884 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000867884 536__ $$0G:(DE-Juel1)jhpc27_20151101$$aAttempt frequency of oxygen ion jumps in doped ceria (jhpc27_20151101)$$cjhpc27_20151101$$fAttempt frequency of oxygen ion jumps in doped ceria$$x1
000867884 588__ $$aDataset connected to CrossRef
000867884 7001_ $$0P:(DE-Juel1)167130$$aGrieshammer, Steffen$$b1
000867884 7001_ $$00000-0002-3029-9467$$aHein, Philipp$$b2
000867884 7001_ $$0P:(DE-HGF)0$$aGrope, Benjamin O. H.$$b3
000867884 7001_ $$00000-0002-5113-053X$$aNakayama, Masanobu$$b4
000867884 7001_ $$0P:(DE-Juel1)186697$$aMartin, Manfred$$b5$$eCorresponding author$$ufzj
000867884 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C7CP08535D$$gVol. 20, no. 21, p. 14291 - 14321$$n21$$p14291 - 14321$$tPhysical chemistry, chemical physics$$v20$$x1463-9084$$y2018
000867884 8564_ $$uhttps://juser.fz-juelich.de/record/867884/files/Understanding%20the%20conductivity%20maximum.pdf$$yRestricted
000867884 8564_ $$uhttps://juser.fz-juelich.de/record/867884/files/Understanding%20the%20conductivity%20maximum.pdf?subformat=pdfa$$xpdfa$$yRestricted
000867884 909CO $$ooai:juser.fz-juelich.de:867884$$pVDB
000867884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167130$$aForschungszentrum Jülich$$b1$$kFZJ
000867884 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000867884 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186697$$aForschungszentrum Jülich$$b5$$kFZJ
000867884 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000867884 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000867884 9141_ $$y2019
000867884 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000867884 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000867884 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000867884 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2017
000867884 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867884 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867884 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867884 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867884 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867884 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867884 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867884 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867884 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867884 920__ $$lyes
000867884 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000867884 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000867884 980__ $$ajournal
000867884 980__ $$aVDB
000867884 980__ $$aI:(DE-Juel1)IEK-12-20141217
000867884 980__ $$aI:(DE-82)080012_20140620
000867884 980__ $$aUNRESTRICTED
000867884 981__ $$aI:(DE-Juel1)IMD-4-20141217