000867885 001__ 867885
000867885 005__ 20240712113119.0
000867885 0247_ $$2doi$$a10.1021/acsaem.9b00226
000867885 0247_ $$2Handle$$a2128/24289
000867885 0247_ $$2altmetric$$aaltmetric:63194042
000867885 0247_ $$2WOS$$aWOS:000477074700017
000867885 037__ $$aFZJ-2019-06487
000867885 082__ $$a540
000867885 1001_ $$0P:(DE-Juel1)171867$$aSchultze, Tim$$b0$$ufzj
000867885 245__ $$aAb Initio Investigation of Migration Mechanisms in La Apatites
000867885 260__ $$aWashington, DC$$bACS Publications$$c2019
000867885 3367_ $$2DRIVER$$aarticle
000867885 3367_ $$2DataCite$$aOutput Types/Journal article
000867885 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605868050_2609
000867885 3367_ $$2BibTeX$$aARTICLE
000867885 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867885 3367_ $$00$$2EndNote$$aJournal Article
000867885 520__ $$aLanthanum-apatite structures are promising materials for solid-state electrolytes, exceeding the oxygen ion conductivity of yttria-stabilized zirconia at intermediate temperatures. In recent years, several experimental contributions on La-apatites have been published, however, with divergent results. A comprehensive description of migration in dependence on composition is required to further optimize these materials and to predict the properties of similar structures. In this work, the compositions La9.33Si6O26, La10Si6O27 and La8B2Si6O26 (B = Mg, Ca, Sr, Ba) are investigated by means of density functional theory. Different migration paths are considered, and migration energies are obtained via climbing-image nudged elastic band calculations for both the vacancy and interstitialcy mechanism. Migration inside the highly conductive La-tunnel and in the ab plane between La-tunnels is taken into consideration. Among all investigated B doped compositions, La8Sr2Si6O26 shows a minimum in migration energy along the c-axis for the vacancy and interstitialcy mechanism in agreement with the experimental data. Furthermore, the results indicate that the type of migration mechanism depends on the synthesized composition, while the thermal excitation of defects plays a minor role. From our results, we infer that the activation energy of oxygen ion conductivity is mainly governed by the migration in the ab plane.
000867885 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000867885 536__ $$0G:(DE-Juel1)jara0156_20161101$$aAb-initio study of composition, structure and conductivity in interstitial oxygen conductors (jara0156_20161101)$$cjara0156_20161101$$fAb-initio study of composition, structure and conductivity in interstitial oxygen conductors$$x1
000867885 588__ $$aDataset connected to CrossRef
000867885 7001_ $$0P:(DE-Juel1)171920$$aArnold, John P.$$b1
000867885 7001_ $$0P:(DE-Juel1)167130$$aGrieshammer, Steffen$$b2$$eCorresponding author
000867885 773__ $$0PERI:(DE-600)2916551-9$$a10.1021/acsaem.9b00226$$gVol. 2, no. 7, p. 4708 - 4717$$n7$$p4708 - 4717$$tACS applied energy materials$$v2$$x2574-0962$$y2019
000867885 8564_ $$uhttps://juser.fz-juelich.de/record/867885/files/acsaem.9b00226.pdf$$yRestricted
000867885 8564_ $$uhttps://juser.fz-juelich.de/record/867885/files/Apatite_paper-edited%20version.pdf$$yPublished on 2019-06-21. Available in OpenAccess from 2020-06-21.$$zStatID:(DE-HGF)0510
000867885 8564_ $$uhttps://juser.fz-juelich.de/record/867885/files/acsaem.9b00226.pdf?subformat=pdfa$$xpdfa$$yRestricted
000867885 8564_ $$uhttps://juser.fz-juelich.de/record/867885/files/Apatite_paper-edited%20version.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-06-21. Available in OpenAccess from 2020-06-21.$$zStatID:(DE-HGF)0510
000867885 909CO $$ooai:juser.fz-juelich.de:867885$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171867$$aForschungszentrum Jülich$$b0$$kFZJ
000867885 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)171920$$aRWTH Aachen$$b1$$kRWTH
000867885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167130$$aForschungszentrum Jülich$$b2$$kFZJ
000867885 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000867885 9141_ $$y2019
000867885 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000867885 920__ $$lyes
000867885 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000867885 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000867885 9801_ $$aFullTexts
000867885 980__ $$ajournal
000867885 980__ $$aVDB
000867885 980__ $$aI:(DE-Juel1)IEK-12-20141217
000867885 980__ $$aI:(DE-82)080012_20140620
000867885 980__ $$aUNRESTRICTED
000867885 981__ $$aI:(DE-Juel1)IMD-4-20141217