000867886 001__ 867886
000867886 005__ 20220930130225.0
000867886 0247_ $$2doi$$a10.1029/2018WR024658
000867886 0247_ $$2ISSN$$a0043-1397
000867886 0247_ $$2ISSN$$a0148-0227
000867886 0247_ $$2ISSN$$a1944-7973
000867886 0247_ $$2ISSN$$a2156-2202
000867886 0247_ $$2Handle$$a2128/24117
000867886 0247_ $$2WOS$$aWOS:000501839000001
000867886 037__ $$aFZJ-2019-06488
000867886 082__ $$a550
000867886 1001_ $$0P:(DE-Juel1)145813$$aGebler, S.$$b0
000867886 245__ $$aAssimilation of High‐Resolution Soil Moisture Data Into an Integrated Terrestrial Model for a Small‐Scale Head‐Water Catchment
000867886 260__ $$a[New York]$$bWiley$$c2019
000867886 3367_ $$2DRIVER$$aarticle
000867886 3367_ $$2DataCite$$aOutput Types/Journal article
000867886 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599557535_32472
000867886 3367_ $$2BibTeX$$aARTICLE
000867886 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867886 3367_ $$00$$2EndNote$$aJournal Article
000867886 520__ $$aLand surface‐subsurface modeling combined with data assimilation was applied on the Rollesbroich hillslope (Germany). Dense information from a soil moisture sensor network was assimilated with the ensemble Kalman filter applying different scenarios including the update of model states with or without updating of saturated soil hydraulic conductivity on an ensemble size of 128 (or 256) realizations with 3‐D heterogeneous fields of Mualem‐van Genuchten parameters. Simulations were also carried out with a synthetic test case mimicking the Rollesbroich site, to get more insight in the role of model structural errors. The combination of joint updating of model states and hydraulic conductivity was more efficient in updating the soil water content than state updating alone for the real‐world case. On average, the root‐mean‐square error at the sensor locations was reduced by 14% if states and parameters were updated jointly, but discharge estimation was not improved significantly. Synthetic simulations showed much better results with an overall root‐mean‐square error reduction by 55% at independent verification locations in case of daily soil water content data assimilation including parameter estimation. Individual synthetic data assimilation scenarios with parameter estimation showed an increase of the Nash‐Sutcliffe‐Efficiency for discharge from −0.04 for the open loop run to 0.61. This shows that data assimilation in combination with high‐resolution physically based models can strongly improve soil moisture and discharge estimation at the hillslope scale. Large performance differences between synthetic and real‐world experiments indicated the limits of such an approach associated with model structural errors like errors in the prior geostatistical parameters.
000867886 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000867886 536__ $$0G:(DE-Juel1)jibg36_20181101$$aHigh-resolution regional reanalysis with TerrSysMP (jibg36_20181101)$$cjibg36_20181101$$fHigh-resolution regional reanalysis with TerrSysMP$$x1
000867886 588__ $$aDataset connected to CrossRef
000867886 7001_ $$0P:(DE-Juel1)140349$$aKurtz, W.$$b1
000867886 7001_ $$00000-0002-1290-9313$$aPauwels, V. R. N.$$b2
000867886 7001_ $$0P:(DE-Juel1)151405$$aKollet, S. J.$$b3
000867886 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b4
000867886 7001_ $$0P:(DE-Juel1)138662$$aHendricks Franssen, H.‐J.$$b5$$eCorresponding author
000867886 773__ $$0PERI:(DE-600)2029553-4$$a10.1029/2018WR024658$$gp. 2018WR024658$$n12$$p10358-10385$$tWater resources research$$v55$$x1944-7973$$y2019
000867886 8564_ $$uhttps://juser.fz-juelich.de/record/867886/files/Invoice_8242467.PDF
000867886 8564_ $$uhttps://juser.fz-juelich.de/record/867886/files/Gebler_et_al-2019-Water_Resources_Research.pdf$$yOpenAccess
000867886 8564_ $$uhttps://juser.fz-juelich.de/record/867886/files/Gebler_et_al-2019-Water_Resources_Research.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867886 8767_ $$92019-10-22$$d2019-12-11$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pWRCR24247
000867886 8767_ $$88242467$$92019-12-23$$d2020-01-03$$ePage charges$$jZahlung erfolgt$$pWRCR24247$$zUSD 2500.00
000867886 909CO $$ooai:juser.fz-juelich.de:867886$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC_DEAL$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000867886 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b3$$kFZJ
000867886 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b4$$kFZJ
000867886 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b5$$kFZJ
000867886 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000867886 9141_ $$y2019
000867886 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867886 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000867886 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000867886 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER RESOUR RES : 2017
000867886 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867886 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867886 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867886 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867886 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867886 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000867886 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867886 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867886 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867886 920__ $$lyes
000867886 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000867886 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000867886 980__ $$ajournal
000867886 980__ $$aVDB
000867886 980__ $$aI:(DE-Juel1)IBG-3-20101118
000867886 980__ $$aI:(DE-82)080012_20140620
000867886 980__ $$aAPC
000867886 980__ $$aUNRESTRICTED
000867886 9801_ $$aAPC
000867886 9801_ $$aFullTexts