001     867886
005     20220930130225.0
024 7 _ |a 10.1029/2018WR024658
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2128/24117
|2 Handle
024 7 _ |a WOS:000501839000001
|2 WOS
037 _ _ |a FZJ-2019-06488
082 _ _ |a 550
100 1 _ |a Gebler, S.
|0 P:(DE-Juel1)145813
|b 0
245 _ _ |a Assimilation of High‐Resolution Soil Moisture Data Into an Integrated Terrestrial Model for a Small‐Scale Head‐Water Catchment
260 _ _ |a [New York]
|c 2019
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599557535_32472
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Land surface‐subsurface modeling combined with data assimilation was applied on the Rollesbroich hillslope (Germany). Dense information from a soil moisture sensor network was assimilated with the ensemble Kalman filter applying different scenarios including the update of model states with or without updating of saturated soil hydraulic conductivity on an ensemble size of 128 (or 256) realizations with 3‐D heterogeneous fields of Mualem‐van Genuchten parameters. Simulations were also carried out with a synthetic test case mimicking the Rollesbroich site, to get more insight in the role of model structural errors. The combination of joint updating of model states and hydraulic conductivity was more efficient in updating the soil water content than state updating alone for the real‐world case. On average, the root‐mean‐square error at the sensor locations was reduced by 14% if states and parameters were updated jointly, but discharge estimation was not improved significantly. Synthetic simulations showed much better results with an overall root‐mean‐square error reduction by 55% at independent verification locations in case of daily soil water content data assimilation including parameter estimation. Individual synthetic data assimilation scenarios with parameter estimation showed an increase of the Nash‐Sutcliffe‐Efficiency for discharge from −0.04 for the open loop run to 0.61. This shows that data assimilation in combination with high‐resolution physically based models can strongly improve soil moisture and discharge estimation at the hillslope scale. Large performance differences between synthetic and real‐world experiments indicated the limits of such an approach associated with model structural errors like errors in the prior geostatistical parameters.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a High-resolution regional reanalysis with TerrSysMP (jibg36_20181101)
|0 G:(DE-Juel1)jibg36_20181101
|c jibg36_20181101
|f High-resolution regional reanalysis with TerrSysMP
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kurtz, W.
|0 P:(DE-Juel1)140349
|b 1
700 1 _ |a Pauwels, V. R. N.
|0 0000-0002-1290-9313
|b 2
700 1 _ |a Kollet, S. J.
|0 P:(DE-Juel1)151405
|b 3
700 1 _ |a Vereecken, H.
|0 P:(DE-Juel1)129549
|b 4
700 1 _ |a Hendricks Franssen, H.‐J.
|0 P:(DE-Juel1)138662
|b 5
|e Corresponding author
773 _ _ |a 10.1029/2018WR024658
|g p. 2018WR024658
|0 PERI:(DE-600)2029553-4
|n 12
|p 10358-10385
|t Water resources research
|v 55
|y 2019
|x 1944-7973
856 4 _ |u https://juser.fz-juelich.de/record/867886/files/Invoice_8242467.PDF
856 4 _ |u https://juser.fz-juelich.de/record/867886/files/Gebler_et_al-2019-Water_Resources_Research.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/867886/files/Gebler_et_al-2019-Water_Resources_Research.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:867886
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)151405
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21