000867890 001__ 867890
000867890 005__ 20240711085650.0
000867890 0247_ $$2doi$$a10.1111/jace.16935
000867890 0247_ $$2ISSN$$a0002-7820
000867890 0247_ $$2ISSN$$a1551-2916
000867890 0247_ $$2Handle$$a2128/24257
000867890 0247_ $$2WOS$$aWOS:000501902800001
000867890 037__ $$aFZJ-2019-06492
000867890 082__ $$a660
000867890 1001_ $$0P:(DE-Juel1)162271$$aGonzalez‐Julian, Jesus$$b0$$eCorresponding author
000867890 245__ $$aCr 2 AlC MAX phase as bond coat for thermal barrier coatings: Processing, testing under thermal gradient loading, and future challenges
000867890 260__ $$aWesterville, Ohio$$bSoc.$$c2020
000867890 3367_ $$2DRIVER$$aarticle
000867890 3367_ $$2DataCite$$aOutput Types/Journal article
000867890 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580914678_7541
000867890 3367_ $$2BibTeX$$aARTICLE
000867890 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867890 3367_ $$00$$2EndNote$$aJournal Article
000867890 520__ $$aCr$_2$AlC layers with thickness up to 100 µm were deposited by high‐velocity‐atmospheric plasma spray (HV‐APS) on Inconel 738 substrates to analyze the potential of MAX phases as bond coat in thermal barrier coating systems (TBCs). The deposited Cr$_2$AlC layers showed high purity with theoretical densities up to 93%, although some secondary phases were detected after the deposition process. On top of this MAX phase layer, a porous yttria‐stabilized zirconia (YSZ) was deposited by atmospheric plasma spraying. The system was tested under realistic thermal loading conditions using a burner rig facility, achieving surface and substrate temperatures of 1400°C and 1050°C, respectively. The system failed after 745 cycles mainly for three reasons: (i) open porosity of the bond coat layer, (ii) oxidation of secondary phases, and (iii) inter‐diffusion. Nevertheless, these results show a high potential of Cr$_2$AlC and other Al‐based MAX phases as bond coat material for high‐temperature applications. Furthermore, future challenges to transfer MAX phases as eventual bond coat or protective layer are discussed.
000867890 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000867890 588__ $$aDataset connected to CrossRef
000867890 7001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b1$$ufzj
000867890 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b2$$ufzj
000867890 7001_ $$0P:(DE-Juel1)129630$$aMack, Daniel E.$$b3
000867890 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b4$$ufzj
000867890 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.16935$$gp. jace.16935$$n4$$p2362-2375$$tJournal of the American Ceramic Society$$v103$$x1551-2916$$y2020
000867890 8564_ $$uhttps://juser.fz-juelich.de/record/867890/files/Gonzalez-Julian_et_al-2020-Journal_of_the_American_Ceramic_Society.pdf$$yOpenAccess
000867890 8564_ $$uhttps://juser.fz-juelich.de/record/867890/files/Gonzalez-Julian_et_al-2020-Journal_of_the_American_Ceramic_Society.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867890 8767_ $$92019-11-27$$d2019-12-11$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$pJACE16935
000867890 909CO $$ooai:juser.fz-juelich.de:867890$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000867890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b0$$kFZJ
000867890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich$$b1$$kFZJ
000867890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b2$$kFZJ
000867890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129630$$aForschungszentrum Jülich$$b3$$kFZJ
000867890 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b4$$kFZJ
000867890 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000867890 9141_ $$y2020
000867890 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867890 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000867890 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000867890 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867890 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2017
000867890 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867890 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867890 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867890 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867890 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867890 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867890 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867890 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867890 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000867890 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867890 920__ $$lyes
000867890 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000867890 9801_ $$aAPC
000867890 9801_ $$aFullTexts
000867890 980__ $$ajournal
000867890 980__ $$aVDB
000867890 980__ $$aUNRESTRICTED
000867890 980__ $$aI:(DE-Juel1)IEK-1-20101013
000867890 980__ $$aAPC
000867890 981__ $$aI:(DE-Juel1)IMD-2-20101013