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Abstract: High-Performance Computing (HPC) has recently been attracting more attention in

remote sensing applications due to the challenges posed by the increased amount of open data

that are produced daily by Earth Observation (EO) programs. The unique parallel computing

environments and programming techniques that are integrated in High-Performance Computing

(HPC) systems are able to solve large-scale problems such as the training of classification algorithms

with large amounts of Remote Sensing (RS) data. This paper shows that the training of state-of-the-art

deep Convolutional Neural Networks (CNNs) can be efficiently performed in distributed fashion

using parallel implementation techniques on HPC machines containing a large number of Graphics

Processing Units (GPUs). The experimental results confirm that distributed training can drastically

reduce the amount of time needed to perform full training, resulting in near linear scaling without

loss of test accuracy.

Keywords: distributed deep learning; high performance computing; residual neural network;

convolutional neural network; classification; sentinel-2

1. Introduction

Modern Earth Observation (EO) programs have an open data policy and provide a massive

volume of free multisensor data every day. Their systems have substantially advanced in recent

decades due to the technological evolution integrated into Remote Sensing (RS) optical and microwave

instruments [1]. NASA’s Landsat [2] (i.e., the longest running EO program) and ESA’s Copernicus [3]

provide data with high spectral–spatial coverage at high revisiting time, which enables global

monitoring of the Earth in a near real-time manner. Copernicus, with its fleet of Sentinel satellites,

is now the World’s largest single EO program (https://sentinel.esa.int/web/sentinel/missions).

These programs are showing that the vast amount of raw data available call for re-definition of the

challenges within the entire RS life cycle (i.e., data acquisition, processing, and application phases). It is

not by coincidence that RS data are now described under the big data terminology, with characteristics

such as volume (increasing scale of acquired/archived data), velocity (rapidly growing data generation

rate and real-time processing needs), variety (data acquired from multiple satellites’ sensors that have

different spectral, spatial, temporal, and radiometric resolutions), veracity (data uncertainty/accuracy),

Remote Sens. 2019, 11, 3056; doi:10.3390/rs11243056 www.mdpi.com/journal/remotesensing



Remote Sens. 2019, 11, 3056 2 of 19

and value (extracted information) [4,5]. The Sentinel-2 mission, for instance, has been operating since

June 2017 with a constellation of two polar orbiting satellite platforms, which allow a temporal

resolution of 5 days at the equator (and even less for areas covered by more than one orbit).

Both Sentinel-2A and Sentinel-2B are equipped with a Multispectral (MS) instrument which acquires

13 optical narrow bands in moderate-to-high spatial resolution (10, 20, and 60 m) and generates

23 TB/day of MS data. The freely available imagery from Sentinel-2 received major attention within

the research community. From 1 December 2017 to 30 November 2018, the Sentinel Data Access

System had a publication rate of over 26,500 products/day with an average daily download volume

of 166 TB (https://sentinels.copernicus.eu/web/sentinel/news/-/article/2018-sentinel-data-access-

annual-report). The large-scale, high-frequency monitoring of the Earth requires robust and scalable

Machine Learning (ML) models trained over annotated (i.e., not raw) time series of multisensor images

at global level [6,7] (e.g., acquired by Landsat 8 and Sentinel-2). However, these data do not exist

yet. This is largely due to the inherent interpretation complexity of RS data (e.g., hyperspectral and

RADAR data) and the effort and cost involved in the collection of training samples. This remains a

key limiting factor in the RS community for the research and development of successfully operational

Deep Learning (DL) classifiers for RS data.

Nevertheless, DL has already brought crucial achievements in solving RS image classification

problems, working on raw multispectral satellite image data [8–10]. The state-of-the-art results

have been achieved via deep networks with backbones based on convolutional transformations

(e.g., Convolutional Neural Networks (CNNs) [11,12], Recurrent Neural Networks (RNNs) [13],

and Generative Adversarial Networks (GANs) [14]). Their hierarchical architecture composed of

stacked repetitive operations enables the extraction of useful image features from raw pixel data

and modeling high-level semantic content of RS images. However, DL architectures have a much

larger number of parameters to estimate than classic ML methods (e.g., shallow classifiers based on

handcrafted features) [15]. Thus, their performance and generalization capabilities are considerably

dependent on the amount and quality of available training data. That is, to train these networks, a very

large annotated training set of sufficient diversity is needed in order to learn effective models.

Table 1 shows the main free annotated remote sensing datasets (i.e., for classification of RGB and

MS images) that are currently available for benchmarking DL classifiers. The gap in terms of data

size with the computer vision domain (e.g., ImageNet with 14,197,122 images (http://www.image-

net.org/)) is still considerably high. Nonetheless, there is an evident trend towards datasets with a

higher number of annotated samples and degree of classification complexity (e.g., BigEarthNet [16],

a multiclass classification task of 590,326 images). Consequently, the computational intensity and

memory demands of DL will continuously increase in the future. In this scenario, approaches relying

on local workstation machines (i.e., using MATLAB, R, SAS, SNAP, and ENVI for data analysis and

interpretation), can provide only limited capabilities. Despite modern commodity computers and

laptops becoming more powerful in terms of multicore configurations and GPUs, the limitations with

regard to computational power and memory are always an issue when it comes to fast training of

large high-accuracy models from correspondingly large amounts of data. Therefore, the use of highly

scalable and parallel distributed architectures (such as clusters [17], grids [18], or clouds [19]) is a

necessary solution to train DL classifiers in a reasonable amount of time, which can then also provide

users with a high-accuracy performance in the recognition tasks. High-Performance Computing (HPC)

systems can reach a performance in the order of petaflops (i.e., 1015 floating point operations per

second) and are already delivering unprecedented breakthroughs [20]. It is important to observe that

ML and DL algorithms have transformed the workloads and workflows that run on these systems,

especially when compared to classic HPC simulation problems. DL algorithms require higher memory

and networking bandwidth throughput capabilities, as well as optimized software and libraries to

deliver the required performance. On the one hand, DL can lead to more accurate classification results

of land cover classes when networks are trained over large RS annotated datasets. On the other hand,
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deep networks pose challenges in terms of training time. In fact, the use of a large datasets for training

a DL model requires the availability of non-negligible time resources.
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The objective of this contribution is to show that HPC systems speed up the training of DL

networks through distributed training frameworks, which can exploit the parallel environment of HPC

clusters. The distribution of the model among multiple nodes can considerably speed up the process

of training it. This enables deployment of various models and comparison of their performances in a

reasonable amount of time. The training of the model is performed via a multimachine data parallelism

strategy that allows minimizing the time required to finish full training: The processing is distributed

across multiple machines connected by a fast dedicated network (i.e., InfiniBand). This paper proposes

a high-performance distributed implementation of the Residual Network (ResNet) [32] type of deep

convolutional networks (so-called deep residual networks) for the multiclass RS image classification

problem. The experiments are performed with the BigEarthNet [16] dataset over the HPC systems

that are based at the Jülich Supercomputing Centre. The experimental results attest that distributed

deep neural network training can extremely reduce the amount of time that is required to complete

the training step without affecting prediction accuracy.

2. Deep Learning

2.1. The ResNet

ResNet is a deep residual CNN architecture developed by He et al. in [32] to overcome difficulties

in training networks with a very large number of layers (>20, up to 1000 layers and more possible [33]),

winning the ImageNet competition in 2015 [34]. The first instantiations of deep feed-forward CNNs

were the ones providing groundbreaking advances in the field of computer vision on tasks like object

detection and object recognition, outperforming previous state-of-the-art ML methods by large margins,

e.g., AlexNet with 8 layers [35], VGG with 16 layers [36] or GoogleNet (Inception) with 22 layers [37].

An increasing number of processing layers resulted in further increasing accuracy performance on

ImageNet challenges in terms of class recognition rates (the ImageNet-1k challenge has 1000 different

object classes that have to be successfully learned during the training on 1.2 Million images [35,38]).

However, simply increasing the number of layers further by stacking more and more convolutional

and other layers (pooling, etc) on top of each other was not functionally successful. The training of

very deep networks resulted in worse accuracy, contrary to expectations set by previous results. It has

been noted that degradation of the training accuracies may be partly caused by a phenomenon known

as vanishing (or exploding) gradients. ResNet architecture has been designed to overcome this issue

by introducing so-called residual blocks featuring skip connections. These connections implemented

an explicit identity mapping for each successor layer in a deep network in addition to the learned

operations that were applied to the input before it reaches the next layer [32,33]. The network was

thus forced to learn residual mappings corresponding to useful transformations and feature extraction

on the image input, while loss gradients could still flow undisturbed during the backward pass via

available skip connections through the whole depth of the network. Different ResNet networks were

shown to train successfully with a number of layers that was impossible to handle before, while using a

smaller number of parameters than previous, less deep architectures (e.g, VGG or Inception networks),

thus allowing for faster training.

ResNet-50 (where the number indicates the number of layers) has since then established a strong

baseline in terms of accuracy, representing good trade-off between accuracy, depth, and number of

parameters, in the same time being very suitable for parallelized, distributed training. As it still

remains the strong baseline for object recognition tasks and is also widely used in scenarios for transfer

learning ([39–41]), the ResNet-50 architecture is adopted for experiments to show successful distributed

training for multiclass, multilabel classification from RS multispectral images.

2.2. Distributed Frameworks

Despite the permanently increasing computational power of Central Processing Unit (CPU)- and

Graphics Processing Unit (GPU)-based hardware and essential improvements in efficiency of deep
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neural network architectures like ResNet, it remains still a computationally very demanding procedure

to train a particular deep neural network to successfully perform a challenging task like object

recognition. Even with state-of-the-art hardware like NVIDIAs V100, full training of a ResNet-50 object

recognition network on ImageNet-1k dataset of 1.2 Million images using a single GPU can still take

more than one day on a single workstation machine (also when taking into account possible acceleration

via more efficient mixed-precision (fp16 and fp32) training or special optimized computational graph

compilers like TensorFlow’s XLA). To conduct a multitude of experiments with various network

architectures on large datasets, training therefore constitutes a prohibitively time-expensive procedure.

To overcome these limitations imposed by computationally expensive training, the DL community

envisages different methods that enable distributed training across multiple computing nodes of

clusters or HPC machines equipped with accelerators like GPUs or highly specialized TPUs [42,43].

Using these methods, it became possible to perform distributed training of large network models

without loss of task performance and drastically reduce the amount of time necessary for a complete

training. For instance, the time to fully train an object recognition network model on ImageNet-1k

(1.2 Millions of images, ca. 80–100 epochs necessary for training to converge) was reduced by orders of

magnitude only within a few years from almost one day to few minutes without substantial loss in

recognition accuracy [44,45].

This work relies on a certain type of distributed training to conduct scaling experiments and make

use of Horovod—a software library that offers a convenient way to execute training and supports

TensorFlow and Keras [46]. Using Horovod, only a few modifications in the standard code used

for quick single node model prototyping are necessary to adapt it for distributed execution across

many nodes.

To enable distributed training, Horovod adapts a data parallel scheme. In the data parallel scheme,

it is assumed that a network model to be trained can fit into the memory of a single GPU device.

Many so-called workers can be then instantiated during the training, each occupying one available

GPU. Each worker contains a clone of the network to train and gets a separate portion of data to

train on, so that for each model update iteration, the global data mini-batch is split into different

portions that are assigned to each worker. Working on their own portion of the mini-batch, each worker

performs a forward pass to compute the network activations and the local loss given their current

input, and a backward pass to compute the local gradients.

To keep all the network models across workers in sync, Horovod employs a decentralized,

synchronous update strategy based on Ring-AllReduce operations [46,47], where gradients of all

workers are collected, averaged, and applied to every clone model network to update their parameter

weights. This is in contrast to centralized update strategies that usually require so-called parameter

servers (PS) to communicate model parameters to the workers.

However, those implementations rely on TCP/IP internode communication, which is not available

on our machines. On the other hand, Horovod relies on operations based on MPI and NCCL libraries,

thus being our preferred choice.

The decentralized update makes better use of network topologies connecting the respective

machines and thus usually employs a more efficient, homogeneous communication strategy to perform

distributed training. On the one hand, the centralized parameter server-based update strategy offers

the flexibility to add or remove the workers, which requires only reconfiguration of a parameter

server. On the other hand, the decentralized approach may offer higher fault tolerance in terms of

not having one weak spot in the communication chain—when a parameter server fails, it is hard

to resume training; when a worker node fails, communication in the decentralized approach can

still be reconfigured without affecting training, as every other working node possesses a full copy of

the model.

For less reliable cluster systems, decentralized updates are therefore a viable option. For robust

HPC systems, where note failure is rare, centralized schemes can be a performant choice as well.

However, to avoid bottlenecks in communication during large-scale distributed training on HPC,
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the setup of many PS is required, which complicates resource allocation, increases complexity of the

necessary code, and makes proper training implementation difficult [42]. Thus, using a decentralized

update scheme as employed by Horovod is an efficient choice in terms of simplicity and speed for

distributed training on HPC.

As a high-level framework at the top of deep learning libraries, Horovod uses well-established MPI

CUDA-aware routines and relies on the NCCL library [46,48] for efficient and robust implementation

of communication between workers that makes the best out of the available network topology and

bandwidth. The choice for Horovod as library for efficient distributed training is also motivated by

the ease, clear structure, and transparency of the necessary code modifications. The corresponding

strategy can be as well implemented in pure TensorFlow via the distributed strategies framework [49];

however, the effort to rewrite a single node prototype code is still considerably more when compared

to modifications required by Horovod. Horovod also supports a unified scheme for using it with

other libraries (PyTorch, MxNet), which again minimizes the effort to deal with specific details of each

respective framework when implementing distributed training.

Apart from issues regarding efficient communication of information necessary for model updates

during distributed training across multiple nodes, there is a further aspect to be dealt with in the

algorithmic challenge to perform distributed training. This aspect is rooted in the nature of the

optimization procedure that performs actual loss minimization. The majority of the optimization

methods used to minimize loss during training are different variations of Stochastic Gradient Descent

(SGD). If training has to be distributed across a substantial amount of workers, the effective size

of the global mini-batch has to grow. Optimization thus has to cope with mini-batch sizes that are

substantially larger that those used for training on a single node. Large mini-batches (for ImageNet,

in the order of a few thousand images per batch as compared to the standard mini-batch size of a few

hundreds for single node training) lead to substantial degradation of performance, e.g., recognition

accuracy, if used without any additional countermeasures [50]. This may be partly due to the very

nature of SGD, which requires a certain amount of noise produced by the rather small sizes of

mini-batches used for update steps.

Currently, there are different solutions to secure the same performance level achieved on a

single node with small mini-batch sizes despite the essential increase of the effective mini-batch size

during distributed training. In the core of the simplest solutions is the tuning of the learning rate

schedule that uses warm-up phases before the training, scales the learning rate with the number

of distributed workers, and reduces the rate according to a fixed factor after a fixed number of

epochs [6,44,50]. More sophisticated strategies to deal with very large batch sizes (for ImageNet,

for instance, greater than 213
= 8192) use adaptive learning rates that are tuned dependent on network

layer depth and the value of computed gradients and progress of training, such as that employed in

LARS (Layer-wise Adaptive Rate Scaling)—an adaptive optimizer dedicated to large-scale distributed

training setting [45,51].

3. Experimental Setup

3.1. Data

The training of the models was carried out using the list of patches provided by BigEarthNet

(http://bigearth.net/). BigEarthNet is an archive consisting of 590,326 patches extracted from 125

Sentinel-2 tiles (Level 2A) acquired from June 2017 to May 2018 [16]. A number of labels is associated

with each patch. The 43 labels originate from the CORINE Land Cover (CLS) inventory of 2018,

available for 10 European countries. According to [16], the number of labels for each patch varies

between 1 and 12, being in 95% of the cases at most 5. The patches have 12 spectral bands: (a) the

3 RGB bands and band 8 at 10 m resolution (120 × 120 pixels), (b) bands 5, 6, 7, 8a, 11, and 12 at 20 m

resolution (60 × 60 pixels), and (c) band 1 and 9 at 60 m resolution (20 × 20 pixels). Band 10 has been

excluded since it is used mainly for cirrus detection [52]. BigEarthNet also provides a list of the patches
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with a significant amount of the area covered by snow or clouds, making it possible to exclude them

from the analysis [53]. Figure 1 shows an example of the patches.

(a) (b) (c) (d)

Figure 1. Example of patches: (a) agro-forestry areas, complex cultivation patterns, non-irrigated arable

land, transitional woodland/shrub, water bodies, (b) airports, olive groves, permanently irrigated

land, (c) broad-leaved forest, burnt areas, transitional woodland/shrub, (d) beaches/dunes/sands,

estuaries, sea and ocean, and sport and leisure facilities.

3.2. Environment

The experiments were carried on two HPC sytems installed at the Jülich Supercomputing Centre:

the Jülich Wizard for European Leadership Science (JUWELS) [54], and the Jülich Research on Exascale

Cluster Architectures (JURECA) [55] supercomputers. In both machines, GPUs partitions were used:

JUWELS consists of 46 nodes, with each having four NVIDIA V100 GPUs (with 16 GB of memory each),

while JURECA has 75 nodes, each equipped with four NVIDIA K80 GPUs (with 24 GB of memory

each). The available benchmark for the experiments relies on a maximum of 24 nodes (i.e., 96 GPUs)

for each system.

For the evaluation, the following Python libraries were used: TensorFlow 1.13.1, Keras 2.2.4,

Horovod 0.16.2, Mpi4py 3.0.1 and Scikit-learn 0.20.3.

In order to upsample the Sentinel-2 bands at a lower resolution to the maximum resolution of

10 m, we use two different upscaling methods. One is based on the super-resolution deep network

approach proposed by Lanaras et al. in [56]. Using super-resolved images, we can obtain the same

high resolution across different bands. The authors provide a pretrained CNN model (i.e., DSen2 (https:

//github.com/lanha/DSen2)) that was trained over a large Sentinel-2 training set which covers a wide

range of geographical locations across different climate zones and land-cover types [56]. Another is

based on simple standard bilinear interpolation. The simple upscaling is there to check whether there

is any advantage in using an advanced super-resolution technique in our case.

The extraction of the patches was carried out with the Geospatial Data Abstraction Library GDAL

2.3.2 through its Python API. GDAL [57] is an open source programming library and set of utilities

that facilitates the manipulation of raster data: It helps with data translation from different file formats,

data types, and map projections.

3.3. Preprocessing Pipeline

One of the aims of this work is to evaluate models’ performance that take Sentinel-2 patches

as input, with all the multispectral bands upsampled to the resolution of 10 m for the RGB bands.

The original BigEarthNet archive was used as a basis to extract the information for generating a

new dataset, one that includes super-resolved patches, as well as the original ones (i.e., publicly

available (http://hdl.handle.net/21.11125/921dbc5e-5948-4453-90c0-40b399ffa418)). In order to

extract bands at a higher resolution, and to study whether those could help in enhancing the

performances of the classification scheme, the DSen2 framework was employed to obtain patches

in which the bands originally at a lower resolution (20 and 60 m) were super-resolved: In this way,
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an image of a beach could be correctly classified with a single label, without the need for separated

labels such as “sand”, “sea”, or “buildings”. Multilabel classification is defined as that type of

classification where classes associated to each sample are not mutually exclusive [60].

According to [59], however, more complex scenarios require finer-grain labeling. For instance,

distinguishing between images of urban areas with different building densities would require specific

classes, which may also occur in combination with the presence of other classes, such as “road” or

“green area”. A characteristic of multilabeling classification is, in fact, that the occurrence of some class

could be correlated with those of others appearing in similar scenarios.

The standard approach when it comes to the computation of the loss function in the multilabel

classification case is the binary cross entropy. A vector of dimension equal to the number of classes is

associated to each sample, where every vector cell represents the presence or absence of a specific class.

In this way, the problem can be dealt with as a binary classification problem for each of the classes,

hence treating them independently. The activation function used for multilabel classification is the

sigmoid function, squashing all the elements of the label vector between 0 and 1. This is different from

using the softmax activation function, which transforms the probabilities so that they sum up to 1.

Instead, using the sigmoid function, it is possible to assure that the labels are not mutually exclusive in

the multilabel case, but more than one can be associated to each sample.

3.5. Restricted RGB and Original Multispectral ResNet-50

Two configurations have been considered for the experiments to establish baselines for successful

training. They differ according to the data in input: (a) input is limited to three RGB bands only, and (b)

input contains 12 multispectral bands. The motivation is, on the one hand, to prepare grounds for

transfer learning experiments using ImageNet pretraining on the data that contain RGB channels

only. On the other hand, RGB configuration serves as a minimal baseline to check whether a full

multispectral input can provide any additional boost for classification performance within standard

ResNet architecture.

The classification scheme used in this paper is based on a slightly modified version of ResNet-50.

In the present work, some changes to the model have been made to better adapt it to the land cover

classification problem. The output layer has been modified to output the prediction probabilities for

the 43 CLC classes. The input size has been changed from the original size of 224 × 224 pixels for

each image to the size of the patches (i.e., 120 × 120 for the 10 m, 60 × 60 for the 20 m, and 20 × 20

for the 60 m resolution). Two different kinds of regularization have been adopted to reduce the

risk of overfitting: (1) an L2 regularization has been applied to all convolutional layers to penalize

large weights, and (2) a dropout with probability equal to 0.5 has been placed before the model’s last

dense layer.

Two data augmentation techniques were used. The first one is a simple rotation of 90, 180 or

270◦ and a flip operation, applied randomly to the patches.The second method is called a mix-up and

consists in taking a batch and subtracting from it a shuffled version of itself, with a probability drawn

from a beta distribution for each patch [61]. The use of these virtual augmented data created with a

simple linear combination of the original samples encourages the model to learn smoother decision

boundaries, making it more robust when unseen samples are fed into the network. An SGD with

Nesterov momentum was selected as an optimizer [62]. The initial learning rate was computed as

η = 0.1 kn
256 [50], where k is the number of workers (i.e., GPUs) and n is the batch size for each worker,

which in this paper is set to 64. In our work, a step decay learning annealing schedule was used:

The actual learning rate was computed multiplying by 0.1 the original learning rate after 30 epochs,

by 0.01 after 60 epochs. and by 0.001 after 80 epochs. In our work, we trained the models for a total

of 100 epochs. This technique is used to reduce the probability of the model to get stuck in a plateau

using a too small learning rate, while on the other hand, a learning rate which is too high may cause

an instability in the optimization process [63]. A warm-up of 5 epochs was applied at the start of the

training process.
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4. Results

4.1. Classification

The classification results are presented for the RGB and the multispectral models. Both models

were adapted to the problem of multilabel classification from the original ResNet-50 [32]. For the

performance metric of the experiment, we employed the F1 score, which is widely used for multiabel

image classification problems. In Tables 2 and 3, the prediction results for a single experiment

performed over 1 node of JUWELS (i.e., 4 NVIDIA V100 GPUs) are reported. For this proposed

ResNet-50 architecture, the model trained on RGB bands performs almost as well as the multispectral

model (see Table 2 that shows the global scores). The prediction scores of each individual class are

reported by Table 3. It can be seen that some classes have a very high F1 score: e.g., the class “Sea

and ocean” has a high F1 score. This is not surprising due to to the specific distinguishable spectral

signature of water. For the same reason, the class “Coastal lagoons” is also easily detected by the model,

despite heavy imbalance—this class has a much smaller number of samples compared, for instance,

to “Sea and ocean”.

Table 2. Classification results for the RGB and multispectral model: P precision, R recall and F1 score.

P R F1

RGB 0.82 0.71 0.77
multispectral 0.83 0.75 0.79

Table 3. Classification results of each class for the RGB and multispectral model: F1 score and support

for each class considering the test set.

Support F1 (Multispectral) F1 (RGB)

Agro-forestry areas 5611 0.803621 0.795872
Airports 157 0.300518 0.374384
Annual crops associated with permanent crops 1275 0.457738 0.442318
Bare rock 511 0.604819 0.620192
Beaches, dunes, sands 319 0.695810 0.608964
Broad-leaved forest 28,090 0.791465 0.771761
Burnt areas 66 0.029851 0
Coastal lagoons 287 0.884758 0.880294
Complex cultivation patterns 21,142 0.722448 0.698238
Coniferous forest 33,583 0.874152 0.866716
Construction sites 244 0.234482 0.213058
Continuous urban fabric 1975 0.784672 0.517737
Discontinuous urban fabric 13,338 0.780262 0.722825
Dump sites 181 0.287037 0.268518
Estuaries 197 0.699088 0.585034
Fruit trees and berry plantations 875 0.452648 0.417887
Green urban areas 338 0.387750 0.369477
Industrial or commercial units 2417 0.552506 0.556856
Inland marshes 1142 0.408505 0.364675
Intertidal flats 216 0.635097 0.584126
Land principally occupied by agriculture 26,447 0.686677 0.667633
Mineral extraction sites 835 0.507598 0.490980
Mixed forest 35,975 0.834221 0.797793
Moors and heathland 1060 0.561134 0.430953
Natural grassland 2273 0.569581 0.512231
Non-irrigated arable land 36,562 0.865387 0.839924
Olive groves 2372 0.621071 0.541914
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Table 3. Cont.

Support F1 (Multispectral) F1 (RGB)

Pastures 20,770 0.780565 0.771802
Peatbogs 3411 0.535477 0.690319
Permanently irrigated land 2505 0.675662 0.643835
Port areas 93 0.503597 0.522388
Rice fields 709 0.669542 0.604770
Road and rail networks and associated land 671 0.300785 0.268623
Salines 75 0.608000 0.517857
Salt marshes 264 0.568578 0.532299
Sclerophyllous vegetation 2114 0.762123 0.671300
Sea and ocean 13,964 0.909013 0.979917
Sparsely vegetated areas 261 0.483460 0.380681
Sport and leisure facilities 996 0.367029 0.406827
Transitional woodland/shrub 29,671 0.664189 0.639412
Vineyards 1821 0.564012 0.545454
Water bodies 11,545 0.858107 0.823858
Water courses 1914 0.803948 0.737060

4.2. Processing Time

The processing times of the JURECA and JUWELS systems are reported only for the multispectral

model. Due to the limited amount of computing time (i.e., core hours) allocated for this project,

each experiment has been run only twice. Figures 3 and 4 report the mean and standard deviation

values. It can be observed that the training time using two nodes (i.e., 8 GPUs) is half (172 s for an

epoch on JUWELS) of the time required to execute the same training with one node (i.e., 4 GPUs)

(347 s). The same can be said in the cases where 2 vs. 4 (172 s vs. 86 s), 4 vs. 8 (86 s vs. 42 s) and 8 vs. 16

(42 s vs. 20 s) nodes are considered. However, the scaling between 12 and 24 nodes seems to be less

than linear (27 s vs. 15 s).

The use of this distribution approach has allowed us to reduce the total time for a full training on

JUWELS from almost 35,000 s using 4 GPUs on 1 node to less than 2500 s using 96 GPUs on 24 nodes.

The results on JURECA shown in Figure 4 confirm this observation. Although it can be seen that

the full run on JURECA (on 2 nodes approximately 14 h, as can be seen in Figure 5) takes almost 3

times more time than those run on JUWELS (on 2 nodes in less than 5 h) due to the available GPUs

(K80 vs. V100), on the other hand, taking advantage of this parallelization framework has enabled the

full training of the model using older GPUs in a reasonable amount of time.

5. Discussion

The class imbalance poses a serious caveat on the performances of the models. In fact, it can

be observed that there are classes which are heavily under-represented compared to others—e.g.,

in the test subset considered for this work, there are more than 30,000 patches associated with the

label “Coniferous forest” but just 93 with label “Port areas”. Thus, it comes as no surprise that the

F1 score obtained for the classes with a low support (i.e., low number of samples) is on average less

than the F1 score of the most populated classes of the dataset, since it is known that class imbalance

can cause a bias towards the majority class [64]. As reported in Section 3.5 in this work, two simple

data augmentation techniques were applied. However, the problem of class imbalance may require

the use of of different techniques, e.g., upsampling of the under-represented samples [65] or loss

weighting to let the model give more importance to samples associated with classes present in a lesser

amount [64]. These methods should be implemented and tested in future work.W Another limitation

that stems from the imbalance problem is that the spectral signature (i.e., the radiation reflected by

the surface as a function of the wavelength) of areas associated with some classes could change over

time, causing low classification results. That may be the case for the class “Burnt areas” (an example

in Figure 1c), showing a very low F1 score. An approach to deal with such a class could be the adoption
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of a multitemporal analysis, implementing, for instance, a change detection method to identify when

a significant change in the spectral signature of a patch (such as the one caused by a fire) occurs.

Moreover, CLS classes may be semantically too stringent for the purpose of classification of land cover

using optical data alone. As an example, CLS has two different classes for “Discontinuous urban fabric”

and “Green urban areas”, which may represent patches with a similar information content. One last

point which could be considered is the fact that the presence of some classes may be correlated with

those of another one. For instance, it is reasonable to assume that “Beaches, dunes, sands” is correlated

with the presence of classes associated with water, as can be observed in Figure 1d, or that a cultivation

pattern is present at the same time of arable land as in in Figure 1a. In this work, it has not been used a

method to explicitly take this information into account, as, e.g., it was done in [16], where the local

descriptors generated by a CNN were then updated using an LSTM network on subtiles of the patches.

In Section 3.2, we stated that our work makes use of DSen2 to upsample the patches to the same

resolution of 10 m across the different bands. We used DSen2 since it is a well-established method for

super-resolution. However, an experiment in which we used a simple bilinear interpolation, run on 8

nodes on JUWELS, showed a very similar F1 score to those obtained using DSen2 (shown in Figure 6).

Further studies should be conducted to investigate whether different DL models could take advantage

of the enhanced spectral characteristics provided by DSen2.

Section 4.1 mentions that the model trained on RGB bands obtains a slightly lower average F1 score

to the one achieved by the multispectral model. However, for the class airports, bare rock, peatbogs,

port areas, sea ocean, and sport and leisure facilities, the F1 score of RGB is higher. For these classes,

the model that is trained with the multispectral data is not able to isolate the RGB information from the

other bands. Generally, a correct network architecture should deliver at least the same classification

results (since multispectral data include the same RGB bands). As we explain in Section 2.1, we selected

the ResNet-50 since it is a well-established baseline architecture in terms of accuracy, represents a

good trade-off between depth and number of parameters, and is very suitable for parallelization.

According to the current results, we established that ResNet-50 is not suitable to deal properly with the

information provided by all the multispectral bands. However, a more detailed study (i.e., out of the

scope of this work) should be conducted by considering different experimental classification settings

(e.g., compare the classification result obtained with one band against RGB).

As has been stated at the introduction of this paper, DL poses challenging questions in terms

of time required for the training of a model due to the large number of parameters. The results

presented in Section 4.2, confirmed that the Horovod distributed training framework enables the

achievement of near linear scaling. However, when dealing with distributed training, the consistency

of the classification results has to be constantly monitored. The reason is that when the size of the

batch is increased (defined as be = bg × k, where be is the effective batch size, bg is the batch size

per GPU, and k is the number of GPUs) a degradation of the accuracy often occurs. At first glance

in Figure 6, a slow trend of a decrease in the fscore is apparent when a larger number of nodes is

employed. The results obtained using JUWELS are confirmed also by those from JURECA (please

note that the fscore of 1 node is not reported, since the computation time has exceeded the limit of

the system). Without further special mechanisms, stable training with SGD is possible only for a

total batch size of <8192 [66]. During training, an explosion of the loss during the first epochs with

a high learning rate was typically observed, which does not occur at a more advanced stage of the

training when a lower learning rate is used. This phenomenon is particularly noticeable when a

large number of nodes is used. The initial learning rate is in fact dependent on the number of nodes

in the formula shown in Section 3.5. As a direct consequence, if a large number of nodes is used,

the initial learning rate is large. The step decay learning rate scheduler used in the present work is the

one defined by Goyal et al. [50]; however, different schemes such as the polynomial decay scheduler

could be employed to make the loss less prone to explosion during the training process. The use of

different types of optimizers could as well be studied further in detail as a workaround to overcome

this known problem.
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6. Conclusions

Large-scale deep neural networks have millions of weights and require large amounts of data to

optimize these parameters to converge to a satisfactory testing accuracy. With the size of the learning

networks and annotated remote sensing datasets growing, it becomes possible to automatically extract

useful features and representations suitable for high-accuracy classification tasks, but at the cost of

higher computation time necessary for the full training. The experimental results of this paper confirm

that distributed training over HPC systems can drastically reduce the amount of time needed to

complete the training step, resulting in near linear scaling without significant loss of test accuracy.

The publication of this paper includes the availability of the dataset and the Python implementation of

the models (https://gitlab.com/rocco.sedona/mdpi-paper-bigearth).
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Abbreviations

The following abbreviations are used in this manuscript:

EO Earth Observation

RS Remote Sensing

DL Deep Learning

ML Machine Learning

HPC High-Performance Computing

MPI Message Passing Interface

CNN Convolutional Neural Network

RNN Recurrent Neural Network

GAN Generative Adversarial Network

MS Multispectral

ResNet Residual Network

JUWELS Jülich Wizard for European Leadership Science

JURECA Jülich Research on Exascale Cluster Architectures

GPU Graphics Processing Unit

CPU Central Processing Unit

SGD Stochastic Gradient Descent

CLS CORINE Land Cover
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