Home > Publications database > Multi-Scale Convolutional SVM Networks for Multi-Class Classification Problems of Remote Sensing Images > print |
001 | 867900 | ||
005 | 20230918092306.0 | ||
024 | 7 | _ | |a 10.1109/IGARSS.2019.8899831 |2 doi |
024 | 7 | _ | |a 2128/23600 |2 Handle |
024 | 7 | _ | |a WOS:000519270601013 |2 WOS |
037 | _ | _ | |a FZJ-2019-06502 |
100 | 1 | _ | |a Cavallaro, Gabriele |0 P:(DE-Juel1)171343 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium |c Yokohama |d 2019-07-28 - 2019-08-02 |w Japan |
245 | _ | _ | |a Multi-Scale Convolutional SVM Networks for Multi-Class Classification Problems of Remote Sensing Images |
260 | _ | _ | |c 2019 |b IEEE |
295 | 1 | 0 | |a [Proceedings] - IEEE, 2019. - ISBN 978-1-5386-9154-0 |
300 | _ | _ | |a 875-878 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1576507707_30946 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
520 | _ | _ | |a The classification of land-cover classes in remote sensing images can suit a variety of interdisciplinary applications suchas the interpretation of natural and man-made processes onthe Earth surface. The Convolutional Support Vector Machine (CSVM) network was recently proposed as binary classifier for the detection of objects in Unmanned Aerial Vehicle (UAV) images. The training phase of the CSVM isbased on convolutional layers that learn the kernel weightsvia a set of linear Support Vector Machines (SVMs). Thispaper proposes the Multi-scale Convolutional Support VectorMachine (MCSVM) network, that is an ensemble of CSVMclassifiers which process patches of different spatial sizes andcan deal with multi-class classification problems. The experiments are carried out on the EuroSAT Sentinel-2 dataset andthe results are compared to the one obtained with recent transfer learning approaches based on pre-trained ConvolutionalNeural Networks (CNNs). |
536 | _ | _ | |a 512 - Data-Intensive Science and Federated Computing (POF3-512) |0 G:(DE-HGF)POF3-512 |c POF3-512 |f POF III |x 0 |
536 | _ | _ | |a DEEP-EST - DEEP - Extreme Scale Technologies (754304) |0 G:(EU-Grant)754304 |c 754304 |f H2020-FETHPC-2016 |x 1 |
536 | _ | _ | |a HBP - The Human Brain Project (604102) |0 G:(EU-Grant)604102 |c 604102 |f FP7-ICT-2013-FET-F |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef Conference |
700 | 1 | _ | |a Bazi, Yakoub |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Melgani, Farid |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Riedel, Morris |0 P:(DE-Juel1)132239 |b 3 |
773 | _ | _ | |a 10.1109/IGARSS.2019.8899831 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/867900/files/MCSVM_Cavallaro.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/867900/files/MCSVM_Cavallaro.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:867900 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171343 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)132239 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-512 |2 G:(DE-HGF)POF3-500 |v Data-Intensive Science and Federated Computing |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a contb |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|