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ABSTRACT

The classification of land-cover classes in remote sensing im-

ages can suit a variety of interdisciplinary applications such

as the interpretation of natural and man-made processes on

the Earth surface. The Convolutional Support Vector Ma-

chine (CSVM) network was recently proposed as binary clas-

sifier for the detection of objects in Unmanned Aerial Ve-

hicle (UAV) images. The training phase of the CSVM is

based on convolutional layers that learn the kernel weights

via a set of linear Support Vector Machines (SVMs). This

paper proposes the Multi-scale Convolutional Support Vector

Machine (MCSVM) network, that is an ensemble of CSVM

classifiers which process patches of different spatial sizes and

can deal with multi-class classification problems. The exper-

iments are carried out on the EuroSAT Sentinel-2 dataset and

the results are compared to the one obtained with recent trans-

fer learning approaches based on pre-trained Convolutional

Neural Networks (CNNs).

Index Terms— Multi-scale convolutional support vector

machine (MCSVM) network, supervised feature generation,

multiclass classification, sentinel-2, remote sensing

1. INTRODUCTION

Passive optical sensors are a class of remote sensing instru-

ments able to collect natural radiation from the Earth’s sur-

face and convert it into imagery [1]. A wide variety of resolu-

tions, ranging from panchromatic to hyperspectral images, are

nowadays available to serve different thematic applications.

Among all the possible products that can be derived from re-

mote sensing images, classification products are among the

most frequently utilized. Supervised classification algorithms

can be used to distinguish between different types of land-

cover classes (e.g., streets, houses, grass, etc.) in order to

interpret processes, such as monitoring of urban growth, land
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cover mapping, road network extraction, impacts of natural

disasters, crop monitoring, object detection, etc. [2].

Recently, deep learning has brought in revolutionary

achievements in many applications, including the classifi-

cation of remote sensing images [3]. The state-of-the-art

results have been achieved by the Convolutional Neural Net-

works (CNNs) [4, 5] due to their sophisticated hierarchical

structure able to extract more hidden and deeper features than

classic machine learning methods based on handcrafted fea-

tures (i.e., shallow classifiers). The performance of a CNN

classifier is considerably dependent on the amount of avail-

able training data (i.e., the larger is the training set the lower

is the chance that overfitting occurs). Despite the recent ad-

vances in Earth observation benchmark data creation (e.g.,

RSI-CB128 with 36,000 images and 45 annotated classes 1),

the gap with the data size of the computer vision datasets

(e.g., ImageNet with 14,197,122 images 2) is still a key lim-

iting factor for the development of effective deep network

classifiers for remote sensing data. The scarcity of large,

reliable and open-source annotated datasets is largely due

to the inherent interpretation complexity of remote sensing

data (e.g., RADAR images) and the time effort and cost in-

volved in the collection of training samples. One effective

approach to handle small/medium datasets is transfer learn-

ing [6]. It consists of acquiring the knowledge from networks

that were pre-trained on an auxiliary recognition task with a

higher number of labeled data (e.g., ResNet [7]) instead of

performing the training from scratch.

Bazi et al. [8] proposed the Convolutional Support Vec-

tor Machine (CSVM) network for binary classification of

datasets that have limited number of annotated samples. The

CSVM adopts a learning strategy based on SVMs [9] that

is alternative to the standard backpropagation algorithm [5].

The novelty was the introduction of the SVM convolutional

layers that learn the kernel weights via a forward supervised

learning strategy based on a set of linear SVMs. This paper

introduces the Multi-Scale CSVM network for multiclass

1https://github.com/lehaifeng/RSI-CB
2http://www.image-net.org/



Fig. 1. Example of a MCSVM network that receives as input batches of two different spatial sizes. The architecture includes

two SVM convolutional layers, two reduction layers, a concatenation and feature generation step, and a classification layer

placed on the top.

classification problems. It is an ensemble of CSVM net-

works, where each CSVM takes in input a set of batches at

a defined spatial size. The experiments are conducted on the

EuroSAT Sentinel 2 dataset which consists of classifying 10

land cover classes. The comparison of the preliminary results

with the one obtained with pretrained CNNs confirms the

effectiveness of the SVM convolutional layers for multi-class

classification problems.

2. MULTI-SCALE CONVOLUTIONAL SVM

2.1. SVM Convolutional Layer

The MCSVM network (see Figure 1) is composed by N
CSVM networks that receive in input batches with different

sizes K = {kj}
N

j=1, with kj ∈ Z∗. Each CSVM network

includes many SVM convolutional layers, which are differ-

ent than the convolutional layers of standard CNNs. In the

following sub-sections, the structure of the first SVM convo-

lutional layer (i.e., SVM
(j,1)
1 , SVM

(j,1)
2 , ... , SVM j,1

n(1)
) of

a jth CSVM network is described. The generalization to the

next layers is plain.

2.1.1. Formation of the Global Training Set

Let {Ii, yi}
M
i=1 be the training set composed of M multi-bands

images with {Ii ∈ ℜr×c×b}, where r, c and b refers to the

number of rows, columns and bands of the image, respec-

tively, while yi ∈ Z∗ denotes the class label. From each im-

age {Ii}, a set of non-overlapped patches of size kj × kj × b

are extracted and reshaped as feature vectors xi of dimen-

sion dj = kj × kj × b. The result is a global training set

T
(1)
j = {xi, yi}

m(1)

i=1 of size m(1).

2.1.2. Training the set of SVM Filter Banks

A set of linear SVM filters are learned on distinct sub-training

sets T
(1)
subj

= {xi, yi}
l
i=1 by optimizing the unconstrained

optimization problem described in [10] (i.e., with the L2-

loss function). The l samples are randomly extracted from

the global training set T
(1)
j . After training, the SVM filters

{w
(1)
j,z}

n(1)

z=1 are computed. The term w
(1)
j,z ∈ ℜg×dj refers to

zth-SVM filter weight matrix, while n(1) is the number of fil-

ters. Each filter matrix wj ∈ ℜ[g×dj ] includes the weights that

are assigned to the features, with g = n class ∗ (n class −
1)/2 (i.e., the output attribute coef for multiclass cases with

the linear kernel 3). The complete weights of this convo-

lutional layer could be grouped into a filter bank W
(1)
j ∈

ℜg×dj×n(1)

.

2.1.3. Generation of the Convolutional Feature Maps

Each training image {Ii, yi}
M
i=1 is convolved with the SVM

filters to generate a set of 3-D hyper-feature maps {H
(1)
j,i }

M
i=1.

Here, {H
(1)
j,i } ∈ ℜr(1)×c(1)×b(1)} is the new feature represen-

tation of image Ii composed of n(1) feature maps. To obtain

the zth feature map h
(1)
z,j,i, the zth SVM filter is convolved with

3https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html



Table 1. Classification results of different pretrained CNNs and the proposed MCSVM for the EuroSAT dataset. The experi-

ments of the first four columns use the three features Red, Green and Blue colors while the last column, includes 14 features (i.e.,

the original 13 bands of Sentinel-2 concatenated with the NDVI). For each configuration, the average and standard deviation in

brackets of several metrics are reported (the values result from 5 different generated training sets).

DenseNet169 ResNet-50 VGG16 MCSVM MCSVM Metrics

3 features (RGB) 14 features (sentinel 2 + NDVI)

77.52 (3.77) 90.65 (0.56) 92.85 (0.26) 76.28 (0.96) 93.60 (0.37) OA

82.04 (1.49) 90.45 (0.55) 92.59 (0.28) 77.51 (0.63) 93.43 (0.34) AA

75.01 (4.19) 89.59 (0.63) 92.04 (0.29) 73.56 (1.07) 92.88 (0.41) Kappa

1043.17 (129.69) 405.12 (4.35) 277.20 (5.84) 2658.40 (8.08) 928.39 (11.05) Train+Test time [s]

a set of sliding windows of size kj ×kj ×b (with a predefined

stride) over the training image Ii

h
(1)
z,j,i = f(Ii ∗ w

(1)
z,j), z = 1, ..., n(1) (1)

where ∗ is the convolution operator and f is the ReLU

activation function. The spatial size of the feature maps

{H
(1)
j,i }

M
i=1 is then reduced via a pooling operation (i.e., ei-

ther max of mean) as it is done in a pooling layer of a CNN

network.

2.2. Generation of the Convolutional Feature Maps

At the last SVM computing layer L (convolution or reduction

depending on the architecture) of each CSVM, the hyper-

feature maps {H
(L)
j,i , yi}

M
i=1 are outputted. These maps

are then concatenated {H
(L)
1,i ,H

(L)
2,i , ...,H

(L)
N,i, yi}

M
i=1. Sub-

sequently, the feature generation step takes as input each

concatenated hyper-feature map {H
(L)
1,i ,H

(L)
2,i , ...,H

(L)
N,i} for

the training image Ii and compute the mean or max value

for each feature map. A non linear SVM classifier with the

Radial Basis Function (RBF) kernel is finally trained over

these features.

3. EXPERIMENTAL RESULTS

3.1. Dataset

The experiments have been carried out on the open-source

EuroSAT dataset [11]. It includes two subsets of Sentinel-2

satellite image patches (i.e., with spatial size of 64 × 64 pix-

els) 4: one with the RGB colors and the other with the all 13

original spectral bands acquired by the Sentinel 2 multispec-

tral sensor. Both subsets consist of 10 classes with in total

27,000 labeled images. The Normalised Difference Vegeta-

tion Index (NDVI 5) is also considered as additional feature

for the experiments of the MCSVM network.

4http://madm.dfki.de/downloads
5https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-

msi/level-2a/algorithm

3.2. Experimental Setup

Preliminary results are presented for a single layer MCSVM

network architecture. The EuroSAT dataset is split into a

training and test set at the ratio of 80:20. The MCSVM en-

sembles three CSVM networks which receive as input batches

with the following dimensions K = {8, 10, 12}. Each CSVM

has only one SVM convolutional layer which includes 7 lin-

ear SVM classifiers. The 2D convolutional operations are

performed with the stride set to 5 and combined with a re-

duction layer (max pooling) with window shape and stride

set to 3 and 2, respectively. Each SVM filter is trained with

l = 1000 patches (100 for each class) that are randomly ex-

tracted. The estimation of the penalty parameter C for each

SVM is done via a 5-fold cross-validation procedure in the

range [10−1102].

The experiments are performed on the JURON supercom-

puter system at the Jülich Supercomputing Centre. For im-

plementing the CSVM network (i.e., with Python 3.6.1),

the following software packages and respective versions were

used: the TensorFlow 1.7.0 (GPU) for the realization

of the convolution operations, the ThunderSVM (GPU) for

the SVM algorithm and the h5py 2.8.0 for interfacing the

Hierarchical Data Format (HDF5) files.

3.3. Evaluation

The performance of the MCSVM is evaluated in terms of the

standard metrics Overall Accuracy (OA), Average Accuracy

(AA) and Cohen’s Kappa coefficient (Kappa), as depicted by

Table 1. To rate the results, three popular pretrained CNNs are

run with the same input setting: DenseNet169 [12], ResNet-

50 [7] and VGG-16 [13]. For each pretrained network, the

weights resulting from the training of the ImageNet dataset

are frozen for all the layers (i.e., not trainable). Two addi-

tional layers are added on top (a fully connected layer fol-

lowed by a softmax layer with 10 outputs) and trained with

20 epochs. The classification results of MCSVM that are ob-

tained with the RGB dataset are not satisfactory, especially if

they are compared with the one of the VGG16 network. How-



ever, with the 14 bands dataset (i.e., 13 bands of Sentinel-2

and the NDVI), the MCSVM is able to achieve competitive

classification results. The pretrained networks are not eval-

uated with this dataset since their weights have been trained

with 3-channel images and their original architectures have to

be modified. Table 1 reports also the processing times (i.e.,

training plus test). The training time of the pretrained net-

works is only the fraction that was spent by the 20 epochs for

learning the two top additional layers.

The good performance of the MCSVM network is espe-

cially encouraging if considered within the whole satellite

image data framework. On the one hand, deep learning has

proved capable of outperforming traditional machine learn-

ing classifier. On the other hand, the majority of the proposed

deep networks operate with the limited RGB information. In

the light of the fact that many earth observation programmes

put a lot of effort and resources in designing sensors with

higher resolutions, new methods have to be developed in or-

der to avoid their underutilization.

4. CONCLUSIONS

This paper proposed a novel MCSVM network for multi-class

classification problems of remote sensing images. Its archi-

tecture can include several CSVM networks that take as in-

puts batches with different spatial sizes. With this configura-

tion the classifier can exploit both the spatial and spectral in-

formation and provide competitive classification results com-

pared to recent solutions based on knowledge transfer from

pretrained CNNs.

As perspectives, it is intended to investigate the effect of

the different tunable parameters and additional layers on the

performance of the network into more detail. Furthermore,

thanks to the availability of distributed-GPU systems at Jülich

Supercomputing Centre, it is planned to scale up the training

phase by distributing the compute load (SVM training and

convolution operations) over different GPUs.
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