001     867901
005     20230918092258.0
024 7 _ |a 10.1109/IGARSS.2019.8898487
|2 doi
024 7 _ |a 2128/23604
|2 Handle
024 7 _ |a WOS:000519270605170
|2 WOS
037 _ _ |a FZJ-2019-06503
100 1 _ |a Erlingsson, Ernir
|0 P:(DE-HGF)0
|b 0
111 2 _ |a IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium
|c Yokohama
|d 2019-07-28 - 2019-08-02
|w Japan
245 _ _ |a Scalable Workflows for Remote Sensing Data Processing with the Deep-Est Modular Supercomputing Architecture
260 _ _ |c 2019
|b IEEE
300 _ _ |a 5905-5908
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1576509821_476
|2 PUB:(DE-HGF)
520 _ _ |a The implementation of efficient remote sensing workflows isessential to improve the access to and analysis of the vastamount of sensed data and to provide decision-makers withclear, timely, and useful information. The Dynamical Exascale Entry Platform (DEEP) is an European pre-exascaleplatform that incorporates heterogeneous High-PerformanceComputing (HPC) systems, i.e., hardware modules which include specialised accelerators. This paper demonstrates thepotential of such diverse modules for the deployment of remote sensing data workflows that include diverse processing tasks. Particular focus is put on pipelines which can usethe Network Attached Memory (NAM), which is a novel supercomputer module that allows near processing and/or fastshared storage of big remote sensing datasets.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
536 _ _ |a DEEP-EST - DEEP - Extreme Scale Technologies (754304)
|0 G:(EU-Grant)754304
|c 754304
|f H2020-FETHPC-2016
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Neukirchen, Helmut
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 3
|u fzj
773 _ _ |a 10.1109/IGARSS.2019.8898487
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/867901/files/Erlingsson_IGARSS2019.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/867901/files/Erlingsson_IGARSS2019.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:867901
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21