000867902 001__ 867902
000867902 005__ 20240619083558.0
000867902 0247_ $$2doi$$a10.1002/smll.201904136
000867902 0247_ $$2Handle$$a2128/23736
000867902 0247_ $$2altmetric$$aaltmetric:66627966
000867902 0247_ $$2pmid$$apmid:31460707
000867902 0247_ $$2WOS$$aWOS:000483950300001
000867902 037__ $$aFZJ-2019-06504
000867902 041__ $$aEnglish
000867902 082__ $$a540
000867902 1001_ $$0P:(DE-HGF)0$$aMoreno-Guerra$$b0
000867902 245__ $$aModel free Rheo-AFM probes the viscoelasticity of tunable DNA soft colloids
000867902 260__ $$aWeinheim$$bWiley-VCH$$c2019
000867902 3367_ $$2DRIVER$$aarticle
000867902 3367_ $$2DataCite$$aOutput Types/Journal article
000867902 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576764009_22300
000867902 3367_ $$2BibTeX$$aARTICLE
000867902 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867902 3367_ $$00$$2EndNote$$aJournal Article
000867902 520__ $$aAtomic force microscopy rheological measurements (Rheo‐AFM) of the linear viscoelastic properties of single, charged colloids having a star‐like architecture with a hard core and an extended, deformable double‐stranded DNA (dsDNA) corona dispersed in aqueous saline solutions are reported. This is achieved by analyzing indentation and relaxation experiments performed on individual colloidal particles by means of a novel model‐free Fourier transform method that allows a direct evaluation of the frequency‐dependent linear viscoelastic moduli of the system under investigation. The method provides results that are consistent with those obtained via a conventional fitting procedure of the force‐relaxation curves based on a modified Maxwell model. The outcomes show a pronounced softening of the dsDNA colloids, which is described by an exponential decay of both the Young's and the storage modulus as a function of the salt concentration within the dispersing medium. The strong softening is related to a critical reduction of the size of the dsDNA corona, down to ≈70% of its size in a salt‐free solution. This can be correlated to significant topological changes of the dense star‐like polyelectrolyte forming the corona, which are induced by variations in the density profile of the counterions. Similarly, a significant reduction of the stiffness is obtained by increasing the length of the dsDNA chains, which we attribute to a reduction of the DNA density in the outer region of the corona.
000867902 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000867902 7001_ $$0P:(DE-HGF)0$$aRomero-Sanchez$$b1
000867902 7001_ $$0P:(DE-HGF)0$$aMartinez-Borquez$$b2
000867902 7001_ $$0P:(DE-HGF)0$$aTassieri$$b3
000867902 7001_ $$0P:(DE-Juel1)130987$$aStiakakis, Emmanuel$$b4
000867902 7001_ $$0P:(DE-HGF)0$$aLaurati$$b5$$eCorresponding author
000867902 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.201904136$$p1904136$$tSmall$$v15$$x1613-6810$$y2019
000867902 8564_ $$uhttps://juser.fz-juelich.de/record/867902/files/Moreno-Guerra_et_al-2019-Small-1.pdf$$yOpenAccess
000867902 8564_ $$uhttps://juser.fz-juelich.de/record/867902/files/Moreno-Guerra_et_al-2019-Small-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867902 909CO $$ooai:juser.fz-juelich.de:867902$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130987$$aForschungszentrum Jülich$$b4$$kFZJ
000867902 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000867902 9141_ $$y2019
000867902 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867902 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000867902 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL : 2017
000867902 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSMALL : 2017
000867902 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867902 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867902 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867902 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867902 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867902 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867902 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867902 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867902 920__ $$lyes
000867902 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie$$x0
000867902 9801_ $$aFullTexts
000867902 980__ $$ajournal
000867902 980__ $$aVDB
000867902 980__ $$aUNRESTRICTED
000867902 980__ $$aI:(DE-Juel1)ICS-3-20110106