000867906 001__ 867906
000867906 005__ 20250129094340.0
000867906 0247_ $$2Handle$$a2128/24429
000867906 0247_ $$2URN$$aurn:nbn:de:0001-2020072205
000867906 0247_ $$2ISSN$$a1866-1807
000867906 020__ $$a978-3-95806-462-1
000867906 037__ $$aFZJ-2019-06505
000867906 041__ $$aEnglish
000867906 1001_ $$0P:(DE-Juel1)167574$$aJi, Wenhai$$b0$$eCorresponding author$$ufzj
000867906 245__ $$aThe guided self-assembly of magnetic nanoparticles into two- and three-dimensional nanostructures using patterned substrates$$f- 2019-12-20
000867906 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2019
000867906 300__ $$aVI, 140 S.
000867906 3367_ $$2DataCite$$aOutput Types/Dissertation
000867906 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000867906 3367_ $$2ORCID$$aDISSERTATION
000867906 3367_ $$2BibTeX$$aPHDTHESIS
000867906 3367_ $$02$$2EndNote$$aThesis
000867906 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1592554715_22884
000867906 3367_ $$2DRIVER$$adoctoralThesis
000867906 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v214
000867906 502__ $$aRWTH Aachen, Diss., 2019$$bDr.$$cRWTH Aachen$$d2019
000867906 520__ $$aThe present thesis provides an original and extensive contribution to the understanding of the self-assembly of magnetic nanoparticles in different dimensions with the help of patterned sapphire substrates and block copolymers. The combination of real space and reciprocal space techniques allows a better understanding of nanostructures with different dimensions, which are formed on the patterned substrates. The first topic covered in the thesis is formation of 2D nanoparticle assemblies by annealing the M-plane sapphire at various temperatures. The procedure is adjusted to obtain patterned substrates that can accommodate the nanoparticles of a given size. The highly-ordered 2D magnetic nanoparticles arrays deposited on patterned sapphire substrates were studied using scanning electron microscopy and grazing incidence x-ray scattering (GISAXS) methods. In addition, a detailed analysis of GISAXS data using the Distorted Wave Born Approximation theory allowed characterizing the samples quantitatively. The second topic is to deal with the self-organization of 3D nanoparticles assemblies over the macroscopic scale, with precise control of the spatial organization of nanoparticles by employing the block copolymers. It was achieved by controlling the morphology of the block copolymer films with a solvent vapor annealing, which proved to be a powerful method. It was demonstrated that the solvent volume, annealing time and drying process had an impact on the final morphology of the nanocomposite film. The influence of those parameters was thoroughly investigated and optimum values were derived. The orientation parameter obtained from GISAXS measurements allows identifying the different stages of the alignment of the block copolymer matrix. Using developed approach, 3D nanoparticles with a long-range order in nanocomposite film can be readily obtained on patterned substrates, which were confirmed by both atomic force microcopy and GISAXS methods. The magnetic interactions between magnetic nanoparticles in nanocomposite film, containing only 8 wt % of nanoparticles were studied with polarized neutron scattering experiments. The qualitative analysis of the grazing incidence neutron scattering and polarized neutron reflectometry data, combined with GISAXS data analysis, unambiguously demonstrated that a weak magnetic scattering from array of magnetic nanoparticles can be detected. The methodology developed in this work exemplifies a key role of polarized neutron scattering techniques in characterization of magnetic inter-particle interactions embedded in complex nanocomposite materials. In conclusion, this work shows how 2D and 3D nanoparticles assemblies can be prepared by using patterned substrates and how preparation parameters affect the resulting nanostructures. The vital role of various scattering methods in qualitative characterization of structural and magnetic properties of nanostructures was emphasized.
000867906 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000867906 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000867906 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000867906 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000867906 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000867906 693__ $$0EXP:(DE-MLZ)MARIA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)MARIA-20140101$$6EXP:(DE-MLZ)NL5N-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eMARIA: Magnetic reflectometer with high incident angle$$fNL5N$$x0
000867906 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x1
000867906 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x2
000867906 8564_ $$uhttps://juser.fz-juelich.de/record/867906/files/Ji-Wenhai.pdf$$yOpenAccess
000867906 8564_ $$uhttps://juser.fz-juelich.de/record/867906/files/Schluesseltech_214.pdf$$yOpenAccess
000867906 8564_ $$uhttps://juser.fz-juelich.de/record/867906/files/Ji-Wenhai.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867906 8564_ $$uhttps://juser.fz-juelich.de/record/867906/files/Schluesseltech_214.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867906 909CO $$ooai:juser.fz-juelich.de:867906$$pdnbdelivery$$pVDB$$pdriver$$purn$$popen_access$$popenaire
000867906 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867906 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000867906 9141_ $$y2019
000867906 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167574$$aForschungszentrum Jülich$$b0$$kFZJ
000867906 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000867906 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000867906 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000867906 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000867906 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000867906 920__ $$lyes
000867906 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000867906 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000867906 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000867906 9801_ $$aFullTexts
000867906 980__ $$aphd
000867906 980__ $$aVDB
000867906 980__ $$aUNRESTRICTED
000867906 980__ $$abook
000867906 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000867906 980__ $$aI:(DE-Juel1)PGI-4-20110106
000867906 980__ $$aI:(DE-82)080009_20140620
000867906 981__ $$aI:(DE-Juel1)JCNS-2-20110106