000867916 001__ 867916
000867916 005__ 20240712113251.0
000867916 0247_ $$2doi$$a10.1002/chem.201901623
000867916 0247_ $$2ISSN$$a0947-6539
000867916 0247_ $$2ISSN$$a1521-3765
000867916 0247_ $$2Handle$$a2128/23728
000867916 0247_ $$2altmetric$$aaltmetric:61222687
000867916 0247_ $$2pmid$$apmid:31140211
000867916 0247_ $$2WOS$$aWOS:000479852000001
000867916 037__ $$aFZJ-2019-06514
000867916 082__ $$a540
000867916 1001_ $$0P:(DE-HGF)0$$aPappert, Kevin$$b0
000867916 245__ $$aNanoscopic Porous Iridium/Iridium Dioxide Superstructures (15 nm): Synthesis and Thermal Conversion by In Situ Transmission Electron Microscopy
000867916 260__ $$aWeinheim$$bWiley-VCH$$c2019
000867916 3367_ $$2DRIVER$$aarticle
000867916 3367_ $$2DataCite$$aOutput Types/Journal article
000867916 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599652052_20793
000867916 3367_ $$2BibTeX$$aARTICLE
000867916 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867916 3367_ $$00$$2EndNote$$aJournal Article
000867916 520__ $$aPorous particle superstructures of about 15 nm diameter,consisting of ultrasmall nanoparticles of iridium andiridium dioxide, are prepared through the reduction ofsodium hexachloridoiridate(+IV) with sodium citrate/sodiumborohydride in water. The water-dispersible porous particlescontain about 20 wt% poly(N-vinylpyrrolidone) (PVP), whichwas added for colloidal stabilization. High-resolution transmissionelectron microscopy confirms the presence of bothiridium and iridium dioxide primary particles (1–2 nm) ineach porous superstructure. The internal porosity(58 vol%) is demonstrated by electron tomography. In situtransmission electron microscopy up to 1000 8C underoxygen, nitrogen, argon/hydrogen (all at 1 bar), and vacuumshows that the porous particles undergo sintering and subsequentcompaction upon heating, a process that starts ataround 250 8C and is completed at around 8008C. Finally,well-crystalline iridium dioxide is obtained under all four environments.The catalytic activity of the as-prepared poroussuperstructures in electrochemical water splitting (oxygenevolution reaction; OER) is reduced considerably upon heatingowing to sintering of the pores and loss of internal surfacearea.
000867916 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000867916 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x1
000867916 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x2
000867916 536__ $$0G:(GEPRIS)257727131$$aDFG project 257727131 - Nanoskalige Pt Legierungselektrokatalysatoren mit definierter Morphologie: Synthese, Electrochemische Analyse, und ex-situ/in-situ Transmissionselektronenmikroskopische (TEM) Studien (257727131)$$c257727131$$x3
000867916 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x4
000867916 588__ $$aDataset connected to CrossRef
000867916 65027 $$0V:(DE-MLZ)SciArea-110$$2V:(DE-HGF)$$aChemistry$$x0
000867916 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0
000867916 7001_ $$0P:(DE-HGF)0$$aLoza, Kateryna$$b1
000867916 7001_ $$0P:(DE-Juel1)165174$$aShviro, Meital$$b2$$ufzj
000867916 7001_ $$0P:(DE-HGF)0$$aHagemann, Ulrich$$b3
000867916 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b4$$ufzj
000867916 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b5$$ufzj
000867916 7001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b6$$ufzj
000867916 7001_ $$0P:(DE-HGF)0$$aMaeda, Takuya$$b7
000867916 7001_ $$0P:(DE-HGF)0$$aKaneko, Kenji$$b8
000867916 7001_ $$00000-0002-1641-7068$$aEpple, Matthias$$b9$$eCorresponding author
000867916 773__ $$0PERI:(DE-600)1478547-x$$a10.1002/chem.201901623$$gVol. 25, no. 47, p. 11048 - 11057$$n47$$p11048 - 11057$$tChemistry - a European journal$$v25$$x1521-3765$$y2019
000867916 8564_ $$uhttps://juser.fz-juelich.de/record/867916/files/IrIrO2_Nanoparticles_08.04.19.pdf$$yPublished on 2019-05-28. Available in OpenAccess from 2020-05-28.
000867916 8564_ $$uhttps://juser.fz-juelich.de/record/867916/files/Pappert_et_al-2019-Chemistry_-_A_European_Journal.pdf$$yRestricted
000867916 8564_ $$uhttps://juser.fz-juelich.de/record/867916/files/IrIrO2_Nanoparticles_08.04.19.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-05-28. Available in OpenAccess from 2020-05-28.
000867916 8564_ $$uhttps://juser.fz-juelich.de/record/867916/files/Pappert_et_al-2019-Chemistry_-_A_European_Journal.pdf?subformat=pdfa$$xpdfa$$yRestricted
000867916 909CO $$ooai:juser.fz-juelich.de:867916$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867916 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000867916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165174$$aForschungszentrum Jülich$$b2$$kFZJ
000867916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b4$$kFZJ
000867916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b5$$kFZJ
000867916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich$$b6$$kFZJ
000867916 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000867916 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x1
000867916 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x2
000867916 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x3
000867916 9141_ $$y2019
000867916 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867916 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867916 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000867916 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM-EUR J : 2017
000867916 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM-EUR J : 2017
000867916 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867916 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867916 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867916 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867916 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867916 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867916 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867916 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000867916 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867916 920__ $$lyes
000867916 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000867916 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
000867916 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x2
000867916 9801_ $$aFullTexts
000867916 980__ $$ajournal
000867916 980__ $$aVDB
000867916 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000867916 980__ $$aI:(DE-Juel1)IEK-9-20110218
000867916 980__ $$aI:(DE-Juel1)IEK-14-20191129
000867916 980__ $$aUNRESTRICTED
000867916 981__ $$aI:(DE-Juel1)IET-1-20110218
000867916 981__ $$aI:(DE-Juel1)IET-4-20191129