000867917 001__ 867917
000867917 005__ 20250106101725.0
000867917 0247_ $$2doi$$a10.1002/adfm.201908405
000867917 0247_ $$2ISSN$$a1057-9257
000867917 0247_ $$2ISSN$$a1099-0712
000867917 0247_ $$2ISSN$$a1616-301X
000867917 0247_ $$2ISSN$$a1616-3028
000867917 0247_ $$2WOS$$aWOS:000499713100001
000867917 037__ $$aFZJ-2019-06515
000867917 041__ $$aEnglish
000867917 082__ $$a530
000867917 1001_ $$00000-0002-2245-3057$$aZhou, Chongjian$$b0
000867917 245__ $$aCu Intercalation and Br Doping to Thermoelectric SnSe 2 Lead to Ultrahigh Electron Mobility and Temperature‐Independent Power Factor
000867917 260__ $$aWeinheim$$bWiley-VCH$$c2020
000867917 3367_ $$2DRIVER$$aarticle
000867917 3367_ $$2DataCite$$aOutput Types/Journal article
000867917 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734011097_5473
000867917 3367_ $$2BibTeX$$aARTICLE
000867917 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867917 3367_ $$00$$2EndNote$$aJournal Article
000867917 520__ $$aDue to its single conduction band nature, it is highly challenging to enhance the power factor of SnSe2 by band convergence. Here, it is reported that simultaneous Cu intercalation and Br doping induce strong Cu–Br interaction to connect SnSe2 layers, otherwise isolated, via “electrical bridges.” Atom probe tomography analysis confirms a strong attraction between Cu intercalants and Br dopants in the SnSe2 lattice. Density functional theory calculations reveal that this interaction delocalizes electrons confined around SnSe covalent bonds and enhances charge transfer across the SnSe2 slabs. These effects dramatically increase electron mobility and concentration. Polycrystalline SnCu0.005Se1.98Br0.02 shows even higher electron mobility than pristine SnSe2 single crystal and the theoretical expectation. This results in significantly improved electrical conductivity without reducing effective mass and Seebeck coefficient, thereby leading to the highest power factor of ≈12 µW cm−1 K−2 to date for polycrystalline SnSe2 and SnSe. It even surpasses the value for the state‐of‐the‐art n‐type SnSe0.985Br0.015 single crystal at elevated temperatures. Surprisingly, the achieved power factor is nearly independent of temperature ranging from 300 to 773 K. The engineering thermoelectric figure of merit ZTeng for SnCu0.005Se1.98Br0.02 is ≈0.25 between 773 and 300 K, the highest ZTeng ever reported for any form of SnSe2‐based thermoelectric materials.
000867917 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000867917 588__ $$aDataset connected to CrossRef
000867917 7001_ $$00000-0002-3148-6600$$aYu, Yuan$$b1
000867917 7001_ $$aZhang, Xiangzhao$$b2
000867917 7001_ $$aCheng, Yudong$$b3
000867917 7001_ $$aXu, Jingtao$$b4
000867917 7001_ $$aLee, Yong Kyu$$b5
000867917 7001_ $$aYoo, Byeongjun$$b6
000867917 7001_ $$00000-0001-6543-203X$$aCojocaru‐Mirédin, Oana$$b7
000867917 7001_ $$aLiu, Guiwu$$b8
000867917 7001_ $$aCho, Sung‐Pyo$$b9
000867917 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b10
000867917 7001_ $$00000-0001-5959-6257$$aHyeon, Taeghwan$$b11
000867917 7001_ $$00000-0001-6274-3369$$aChung, In$$b12$$eCorresponding author
000867917 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.201908405$$gp. 1908405 -$$n6$$p1908405$$tAdvanced functional materials$$v30$$x1616-3028$$y2020
000867917 909CO $$ooai:juser.fz-juelich.de:867917$$pVDB
000867917 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b10$$kFZJ
000867917 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000867917 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867917 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2017
000867917 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867917 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867917 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867917 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867917 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867917 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867917 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867917 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867917 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867917 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000867917 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bADV FUNCT MATER : 2017
000867917 920__ $$lyes
000867917 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000867917 980__ $$ajournal
000867917 980__ $$aVDB
000867917 980__ $$aI:(DE-Juel1)PGI-10-20170113
000867917 980__ $$aUNRESTRICTED