001     867917
005     20250106101725.0
024 7 _ |a 10.1002/adfm.201908405
|2 doi
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
024 7 _ |a WOS:000499713100001
|2 WOS
037 _ _ |a FZJ-2019-06515
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Zhou, Chongjian
|0 0000-0002-2245-3057
|b 0
245 _ _ |a Cu Intercalation and Br Doping to Thermoelectric SnSe 2 Lead to Ultrahigh Electron Mobility and Temperature‐Independent Power Factor
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1734011097_5473
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Due to its single conduction band nature, it is highly challenging to enhance the power factor of SnSe2 by band convergence. Here, it is reported that simultaneous Cu intercalation and Br doping induce strong Cu–Br interaction to connect SnSe2 layers, otherwise isolated, via “electrical bridges.” Atom probe tomography analysis confirms a strong attraction between Cu intercalants and Br dopants in the SnSe2 lattice. Density functional theory calculations reveal that this interaction delocalizes electrons confined around SnSe covalent bonds and enhances charge transfer across the SnSe2 slabs. These effects dramatically increase electron mobility and concentration. Polycrystalline SnCu0.005Se1.98Br0.02 shows even higher electron mobility than pristine SnSe2 single crystal and the theoretical expectation. This results in significantly improved electrical conductivity without reducing effective mass and Seebeck coefficient, thereby leading to the highest power factor of ≈12 µW cm−1 K−2 to date for polycrystalline SnSe2 and SnSe. It even surpasses the value for the state‐of‐the‐art n‐type SnSe0.985Br0.015 single crystal at elevated temperatures. Surprisingly, the achieved power factor is nearly independent of temperature ranging from 300 to 773 K. The engineering thermoelectric figure of merit ZTeng for SnCu0.005Se1.98Br0.02 is ≈0.25 between 773 and 300 K, the highest ZTeng ever reported for any form of SnSe2‐based thermoelectric materials.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yu, Yuan
|0 0000-0002-3148-6600
|b 1
700 1 _ |a Zhang, Xiangzhao
|b 2
700 1 _ |a Cheng, Yudong
|b 3
700 1 _ |a Xu, Jingtao
|b 4
700 1 _ |a Lee, Yong Kyu
|b 5
700 1 _ |a Yoo, Byeongjun
|b 6
700 1 _ |a Cojocaru‐Mirédin, Oana
|0 0000-0001-6543-203X
|b 7
700 1 _ |a Liu, Guiwu
|b 8
700 1 _ |a Cho, Sung‐Pyo
|b 9
700 1 _ |a Wuttig, Matthias
|0 P:(DE-Juel1)176716
|b 10
700 1 _ |a Hyeon, Taeghwan
|0 0000-0001-5959-6257
|b 11
700 1 _ |a Chung, In
|0 0000-0001-6274-3369
|b 12
|e Corresponding author
773 _ _ |a 10.1002/adfm.201908405
|g p. 1908405 -
|0 PERI:(DE-600)2039420-2
|n 6
|p 1908405
|t Advanced functional materials
|v 30
|y 2020
|x 1616-3028
909 C O |o oai:juser.fz-juelich.de:867917
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)176716
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ADV FUNCT MATER : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21