001     867918
005     20210130003942.0
024 7 _ |a 10.1039/C9NR05285B
|2 doi
024 7 _ |a 2040-3364
|2 ISSN
024 7 _ |a 2040-3372
|2 ISSN
024 7 _ |a altmetric:65669063
|2 altmetric
024 7 _ |a pmid:31498350
|2 pmid
024 7 _ |a WOS:000496763600029
|2 WOS
037 _ _ |a FZJ-2019-06516
082 _ _ |a 600
100 1 _ |a Rosário, Carlos M. M.
|0 0000-0002-3285-2027
|b 0
|e Corresponding author
245 _ _ |a Metallic filamentary conduction in valence change-based resistive switching devices: the case of TaO x thin film with x ∼ 1
260 _ _ |a Cambridge
|c 2019
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1583841909_2514
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The resistive switching in metal–oxide thin films typically occurs via modulation of the oxygen content in nano-sized conductive filaments. For Ta2O5-based resistive switching devices, the two current models consider filaments composed of oxygen vacancies and those containing metallic Ta clusters. The present work tries to resolve this dispute. The filaments in Ta2O5 were formerly shown to exhibit the same electrical transport mechanisms as TaOx thin films with x ∼ 1.0. In this paper, sputtered thin films of pure β-Ta and of TaOx with different oxygen concentrations are studied and compared in terms of their structure and electrical transport. The structural analysis reveals the presence of Ta clusters in the TaOx films. Identical electrical transport characteristics were observed in the TaOx films with x ∼ 1.0 and in the β-Ta film. Both show the same transport mechanism, a carrier concentration on the order of 1022 cm−3 and a positive magnetoresistance associated with weak antilocalization at T < 30 K. It is concluded that the electrical transport in the TaOx films with x ∼ 1.0 is dominated by percolation through Ta clusters. This means that the transport in the filaments is also determined by percolation through Ta clusters, strongly supporting the metallic Ta filament model.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Thöner, Bo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schönhals, Alexander
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 3
700 1 _ |a Meledin, Alexander
|0 P:(DE-Juel1)173622
|b 4
|u fzj
700 1 _ |a Barradas, Nuno P.
|0 0000-0001-7795-8573
|b 5
700 1 _ |a Alves, Eduardo
|0 0000-0003-0633-8937
|b 6
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 7
700 1 _ |a Wuttig, Matthias
|0 P:(DE-Juel1)176716
|b 8
700 1 _ |a Waser, Rainer
|0 0000-0002-9080-8980
|b 9
700 1 _ |a Sobolev, Nikolai A.
|0 0000-0002-9420-8130
|b 10
700 1 _ |a Wouters, Dirk J.
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1039/C9NR05285B
|g Vol. 11, no. 36, p. 16978 - 16990
|0 PERI:(DE-600)2515664-0
|n 36
|p 16978 - 16990
|t Nanoscale
|v 11
|y 2019
|x 2040-3372
856 4 _ |u https://juser.fz-juelich.de/record/867918/files/c9nr05285b.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/867918/files/c9nr05285b.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:867918
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)158062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)173622
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)176716
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANOSCALE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NANOSCALE : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21