000867919 001__ 867919
000867919 005__ 20210130003943.0
000867919 0247_ $$2doi$$a10.1002/adma.201904316
000867919 0247_ $$2ISSN$$a0935-9648
000867919 0247_ $$2ISSN$$a1521-4095
000867919 0247_ $$2Handle$$a2128/23653
000867919 0247_ $$2pmid$$apmid:31489721
000867919 0247_ $$2WOS$$aWOS:000485747200001
000867919 0247_ $$2altmetric$$aaltmetric:73119725
000867919 037__ $$aFZJ-2019-06517
000867919 082__ $$a660
000867919 1001_ $$aCheng, Yudong$$b0
000867919 245__ $$aUnderstanding the Structure and Properties of Sesqui‐Chalcogenides (i.e., V 2 VI 3 or Pn 2 Ch 3 (Pn = Pnictogen, Ch = Chalcogen) Compounds) from a Bonding Perspective
000867919 260__ $$aWeinheim$$bWiley-VCH$$c2019
000867919 3367_ $$2DRIVER$$aarticle
000867919 3367_ $$2DataCite$$aOutput Types/Journal article
000867919 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576588486_32085
000867919 3367_ $$2BibTeX$$aARTICLE
000867919 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867919 3367_ $$00$$2EndNote$$aJournal Article
000867919 520__ $$aA number of sesqui‐chalcogenides show remarkable properties, which make them attractive for applications as thermoelectrics, topological insulators, and phase‐change materials. To see if these properties can be related to a special bonding mechanism, seven sesqui‐chalcogenides (Bi2Te3, Bi2Se3, Bi2S3, Sb2Te3, Sb2Se3, Sb2S3, and β‐As2Te3) and GaSe are investigated. Atom probe tomography studies reveal that four of the seven sesqui‐chalcogenides (Bi2Te3, Bi2Se3, Sb2Te3, and β‐As2Te3) show an unconventional bond‐breaking mechanism. The same four compounds evidence a remarkable property portfolio in density functional theory calculations including large Born effective charges, high optical dielectric constants, low Debye temperatures and an almost metal‐like electrical conductivity. These results are indicative for unconventional bonding leading to physical properties distinctively different from those caused by covalent, metallic, or ionic bonding. The experiments reveal that this bonding mechanism prevails in four sesqui‐chalcogenides, characterized by rather short interlayer distances at the van der Waals like gaps, suggestive of significant interlayer coupling. These conclusions are further supported by a subsequent quantum‐chemistry‐based bonding analysis employing charge partitioning, which reveals that the four sesqui‐chalcogenides with unconventional properties are characterized by modest levels of charge transfer and sharing of about one electron between adjacent atoms. Finally, the 3D maps for different properties reveal discernible property trends and enable material design.
000867919 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000867919 588__ $$aDataset connected to CrossRef
000867919 7001_ $$aCojocaru‐Mirédin, Oana$$b1
000867919 7001_ $$aKeutgen, Jens$$b2
000867919 7001_ $$aYu, Yuan$$b3
000867919 7001_ $$aKüpers, Michael$$b4
000867919 7001_ $$aSchumacher, Mathias$$b5
000867919 7001_ $$aGolub, Pavlo$$b6
000867919 7001_ $$aRaty, Jean‐Yves$$b7
000867919 7001_ $$aDronskowski, Richard$$b8
000867919 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b9$$eCorresponding author
000867919 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.201904316$$gVol. 31, no. 43, p. 1904316 -$$n43$$p1904316 -$$tAdvanced materials$$v31$$x1521-4095$$y2019
000867919 8564_ $$uhttps://juser.fz-juelich.de/record/867919/files/Cheng_et_al-2019-Advanced_Materials.pdf$$yOpenAccess
000867919 8564_ $$uhttps://juser.fz-juelich.de/record/867919/files/Cheng_et_al-2019-Advanced_Materials.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867919 909CO $$ooai:juser.fz-juelich.de:867919$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867919 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b9$$kFZJ
000867919 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000867919 9141_ $$y2019
000867919 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867919 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000867919 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV MATER : 2017
000867919 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2017
000867919 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000867919 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867919 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867919 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867919 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867919 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867919 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867919 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867919 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000867919 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867919 920__ $$lyes
000867919 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000867919 980__ $$ajournal
000867919 980__ $$aVDB
000867919 980__ $$aUNRESTRICTED
000867919 980__ $$aI:(DE-Juel1)PGI-10-20170113
000867919 9801_ $$aFullTexts