000867920 001__ 867920
000867920 005__ 20210130003943.0
000867920 0247_ $$2doi$$a10.1002/adma.201803777
000867920 0247_ $$2ISSN$$a0935-9648
000867920 0247_ $$2ISSN$$a1521-4095
000867920 0247_ $$2Handle$$a2128/23654
000867920 0247_ $$2altmetric$$aaltmetric:49833265
000867920 0247_ $$2pmid$$apmid:30318844
000867920 0247_ $$2WOS$$aWOS:000453926000029
000867920 037__ $$aFZJ-2019-06518
000867920 082__ $$a660
000867920 1001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b0$$eCorresponding author
000867920 245__ $$aIncipient Metals: Functional Materials with a Unique Bonding Mechanism
000867920 260__ $$aWeinheim$$bWiley-VCH$$c2018
000867920 3367_ $$2DRIVER$$aarticle
000867920 3367_ $$2DataCite$$aOutput Types/Journal article
000867920 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576588619_32085
000867920 3367_ $$2BibTeX$$aARTICLE
000867920 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867920 3367_ $$00$$2EndNote$$aJournal Article
000867920 520__ $$aWhile solid‐state materials are commonly classified as covalent, ionic, or metallic, there are cases that defy these iconic bonding mechanisms. Phase‐change materials (PCMs) for data storage are a prominent example: they have been claimed to show “resonant bonding,” but a clear definition of this mechanism has been lacking. Here, it is shown that these solids are fundamentally different from resonant bonding in the π‐orbital systems of benzene and graphene, based on first‐principles data for vibrational, optical, and polarizability properties. It is shown that PCMs and related materials exhibit a unique mechanism between covalent and metallic bonding. It is suggested that these materials be called “incipient metals,” and their bonding nature “metavalent”. Data for a diverse set of 58 materials show that metavalent bonding is not just a superposition of covalent and metallic cases, but instead gives rise to a unique and anomalous set of physical properties. This allows the derivation of a characteristic fingerprint of metavalent bonding, composed of five individual components and firmly rooted in physical properties. These findings are expected to accelerate the discovery and design of functional materials with attractive properties and applications, including nonvolatile memories, thermoelectrics, photonics, and quantum materials.
000867920 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000867920 588__ $$aDataset connected to CrossRef
000867920 7001_ $$00000-0001-6873-0278$$aDeringer, Volker L.$$b1
000867920 7001_ $$00000-0002-8377-6829$$aGonze, Xavier$$b2
000867920 7001_ $$00000-0003-4075-4563$$aBichara, Christophe$$b3
000867920 7001_ $$0P:(DE-HGF)0$$aRaty, Jean-Yves$$b4
000867920 773__ $$0PERI:(DE-600)1474949-x$$a10.1002/adma.201803777$$gVol. 30, no. 51, p. 1803777 -$$n51$$p1803777 -$$tAdvanced materials$$v30$$x0935-9648$$y2018
000867920 8564_ $$uhttps://juser.fz-juelich.de/record/867920/files/Wuttig_et_al-2018-Advanced_Materials.pdf$$yOpenAccess
000867920 8564_ $$uhttps://juser.fz-juelich.de/record/867920/files/Wuttig_et_al-2018-Advanced_Materials.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867920 909CO $$ooai:juser.fz-juelich.de:867920$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b0$$kFZJ
000867920 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000867920 9141_ $$y2019
000867920 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867920 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000867920 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000867920 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV MATER : 2017
000867920 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER : 2017
000867920 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867920 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867920 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867920 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867920 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867920 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867920 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867920 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000867920 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867920 920__ $$lyes
000867920 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000867920 980__ $$ajournal
000867920 980__ $$aVDB
000867920 980__ $$aUNRESTRICTED
000867920 980__ $$aI:(DE-Juel1)PGI-10-20170113
000867920 9801_ $$aFullTexts