000867921 001__ 867921
000867921 005__ 20210130003944.0
000867921 0247_ $$2doi$$a10.1038/s41467-019-11506-0
000867921 0247_ $$2Handle$$a2128/23655
000867921 0247_ $$2altmetric$$aaltmetric:64636549
000867921 0247_ $$2pmid$$apmid:31388013
000867921 0247_ $$2WOS$$aWOS:000478867500010
000867921 037__ $$aFZJ-2019-06519
000867921 082__ $$a500
000867921 1001_ $$00000-0001-8057-9742$$aZhu, Min$$b0
000867921 245__ $$aDirect atomic insight into the role of dopants in phase-change materials
000867921 260__ $$a[London]$$bNature Publishing Group UK$$c2019
000867921 3367_ $$2DRIVER$$aarticle
000867921 3367_ $$2DataCite$$aOutput Types/Journal article
000867921 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600088356_27411
000867921 3367_ $$2BibTeX$$aARTICLE
000867921 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867921 3367_ $$00$$2EndNote$$aJournal Article
000867921 520__ $$aDoping is indispensable to tailor phase-change materials (PCM) in optical and electronic data storage. Very few experimental studies, however, have provided quantitative information on the distribution of dopants on the atomic-scale. Here, we present atom-resolved images of Ag and In dopants in Sb2Te-based (AIST) PCM using electron microscopy and atom-probe tomography. Combing these with DFT calculations and chemical-bonding analysis, we unambiguously determine the dopants’ role upon recrystallization. Composition profiles corroborate the substitution of Sb by In and Ag, and the segregation of excessive Ag into grain boundaries. While In is bonded covalently to neighboring Te, Ag binds ionically. Moreover, In doping accelerates the crystallization and hence operation while Ag doping limits the random diffusion of In atoms and enhances the thermal stability of the amorphous phase.
000867921 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000867921 536__ $$0G:(DE-Juel1)jara0033_20171101$$aQuantum chemistry of functional chalcogenide for phase-change memories and other applications (jara0033_20171101)$$cjara0033_20171101$$fQuantum chemistry of functional chalcogenide for phase-change memories and other applications$$x1
000867921 588__ $$aDataset connected to CrossRef
000867921 7001_ $$0P:(DE-HGF)0$$aSong, Wenxiong$$b1
000867921 7001_ $$00000-0002-7946-702X$$aKonze, Philipp M.$$b2
000867921 7001_ $$0P:(DE-HGF)0$$aLi, Tao$$b3
000867921 7001_ $$00000-0002-4934-0458$$aGault, Baptiste$$b4
000867921 7001_ $$0P:(DE-HGF)0$$aChen, Xin$$b5
000867921 7001_ $$0P:(DE-HGF)0$$aShen, Jiabin$$b6
000867921 7001_ $$0P:(DE-HGF)0$$aLv, Shilong$$b7
000867921 7001_ $$0P:(DE-HGF)0$$aSong, Zhitang$$b8$$eCorresponding author
000867921 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b9
000867921 7001_ $$00000-0002-1925-9624$$aDronskowski, Richard$$b10
000867921 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-019-11506-0$$gVol. 10, no. 1, p. 3525$$n1$$p3525$$tNature Communications$$v10$$x2041-1723$$y2019
000867921 8564_ $$uhttps://juser.fz-juelich.de/record/867921/files/s41467-019-11506-0.pdf$$yOpenAccess
000867921 8564_ $$uhttps://juser.fz-juelich.de/record/867921/files/s41467-019-11506-0.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867921 909CO $$ooai:juser.fz-juelich.de:867921$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867921 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b9$$kFZJ
000867921 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000867921 9141_ $$y2019
000867921 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867921 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000867921 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000867921 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000867921 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2017
000867921 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2017
000867921 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000867921 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000867921 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867921 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867921 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867921 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867921 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867921 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000867921 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000867921 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867921 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000867921 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867921 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000867921 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867921 920__ $$lyes
000867921 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000867921 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000867921 980__ $$ajournal
000867921 980__ $$aVDB
000867921 980__ $$aI:(DE-Juel1)PGI-10-20170113
000867921 980__ $$aI:(DE-82)080012_20140620
000867921 980__ $$aUNRESTRICTED
000867921 9801_ $$aFullTexts