Hauptseite > Publikationsdatenbank > Direct atomic insight into the role of dopants in phase-change materials > print |
001 | 867921 | ||
005 | 20210130003944.0 | ||
024 | 7 | _ | |a 10.1038/s41467-019-11506-0 |2 doi |
024 | 7 | _ | |a 2128/23655 |2 Handle |
024 | 7 | _ | |a altmetric:64636549 |2 altmetric |
024 | 7 | _ | |a pmid:31388013 |2 pmid |
024 | 7 | _ | |a WOS:000478867500010 |2 WOS |
037 | _ | _ | |a FZJ-2019-06519 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Zhu, Min |0 0000-0001-8057-9742 |b 0 |
245 | _ | _ | |a Direct atomic insight into the role of dopants in phase-change materials |
260 | _ | _ | |a [London] |c 2019 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1600088356_27411 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Doping is indispensable to tailor phase-change materials (PCM) in optical and electronic data storage. Very few experimental studies, however, have provided quantitative information on the distribution of dopants on the atomic-scale. Here, we present atom-resolved images of Ag and In dopants in Sb2Te-based (AIST) PCM using electron microscopy and atom-probe tomography. Combing these with DFT calculations and chemical-bonding analysis, we unambiguously determine the dopants’ role upon recrystallization. Composition profiles corroborate the substitution of Sb by In and Ag, and the segregation of excessive Ag into grain boundaries. While In is bonded covalently to neighboring Te, Ag binds ionically. Moreover, In doping accelerates the crystallization and hence operation while Ag doping limits the random diffusion of In atoms and enhances the thermal stability of the amorphous phase. |
536 | _ | _ | |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521) |0 G:(DE-HGF)POF3-521 |c POF3-521 |f POF III |x 0 |
536 | _ | _ | |a Quantum chemistry of functional chalcogenide for phase-change memories and other applications (jara0033_20171101) |0 G:(DE-Juel1)jara0033_20171101 |c jara0033_20171101 |f Quantum chemistry of functional chalcogenide for phase-change memories and other applications |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Song, Wenxiong |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Konze, Philipp M. |0 0000-0002-7946-702X |b 2 |
700 | 1 | _ | |a Li, Tao |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Gault, Baptiste |0 0000-0002-4934-0458 |b 4 |
700 | 1 | _ | |a Chen, Xin |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Shen, Jiabin |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Lv, Shilong |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Song, Zhitang |0 P:(DE-HGF)0 |b 8 |e Corresponding author |
700 | 1 | _ | |a Wuttig, Matthias |0 P:(DE-Juel1)176716 |b 9 |
700 | 1 | _ | |a Dronskowski, Richard |0 0000-0002-1925-9624 |b 10 |
773 | _ | _ | |a 10.1038/s41467-019-11506-0 |g Vol. 10, no. 1, p. 3525 |0 PERI:(DE-600)2553671-0 |n 1 |p 3525 |t Nature Communications |v 10 |y 2019 |x 2041-1723 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/867921/files/s41467-019-11506-0.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/867921/files/s41467-019-11506-0.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:867921 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)176716 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-521 |2 G:(DE-HGF)POF3-500 |v Controlling Electron Charge-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2017 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NAT COMMUN : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|