001     867921
005     20210130003944.0
024 7 _ |a 10.1038/s41467-019-11506-0
|2 doi
024 7 _ |a 2128/23655
|2 Handle
024 7 _ |a altmetric:64636549
|2 altmetric
024 7 _ |a pmid:31388013
|2 pmid
024 7 _ |a WOS:000478867500010
|2 WOS
037 _ _ |a FZJ-2019-06519
082 _ _ |a 500
100 1 _ |a Zhu, Min
|0 0000-0001-8057-9742
|b 0
245 _ _ |a Direct atomic insight into the role of dopants in phase-change materials
260 _ _ |a [London]
|c 2019
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600088356_27411
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Doping is indispensable to tailor phase-change materials (PCM) in optical and electronic data storage. Very few experimental studies, however, have provided quantitative information on the distribution of dopants on the atomic-scale. Here, we present atom-resolved images of Ag and In dopants in Sb2Te-based (AIST) PCM using electron microscopy and atom-probe tomography. Combing these with DFT calculations and chemical-bonding analysis, we unambiguously determine the dopants’ role upon recrystallization. Composition profiles corroborate the substitution of Sb by In and Ag, and the segregation of excessive Ag into grain boundaries. While In is bonded covalently to neighboring Te, Ag binds ionically. Moreover, In doping accelerates the crystallization and hence operation while Ag doping limits the random diffusion of In atoms and enhances the thermal stability of the amorphous phase.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
536 _ _ |a Quantum chemistry of functional chalcogenide for phase-change memories and other applications (jara0033_20171101)
|0 G:(DE-Juel1)jara0033_20171101
|c jara0033_20171101
|f Quantum chemistry of functional chalcogenide for phase-change memories and other applications
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Song, Wenxiong
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Konze, Philipp M.
|0 0000-0002-7946-702X
|b 2
700 1 _ |a Li, Tao
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gault, Baptiste
|0 0000-0002-4934-0458
|b 4
700 1 _ |a Chen, Xin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Shen, Jiabin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lv, Shilong
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Song, Zhitang
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
700 1 _ |a Wuttig, Matthias
|0 P:(DE-Juel1)176716
|b 9
700 1 _ |a Dronskowski, Richard
|0 0000-0002-1925-9624
|b 10
773 _ _ |a 10.1038/s41467-019-11506-0
|g Vol. 10, no. 1, p. 3525
|0 PERI:(DE-600)2553671-0
|n 1
|p 3525
|t Nature Communications
|v 10
|y 2019
|x 2041-1723
856 4 _ |u https://juser.fz-juelich.de/record/867921/files/s41467-019-11506-0.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/867921/files/s41467-019-11506-0.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:867921
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)176716
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2017
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21