000867922 001__ 867922
000867922 005__ 20210130003944.0
000867922 0247_ $$2doi$$a10.1088/1361-648X/ab078b
000867922 0247_ $$2ISSN$$a0953-8984
000867922 0247_ $$2ISSN$$a1361-648X
000867922 0247_ $$2altmetric$$aaltmetric:57457872
000867922 0247_ $$2pmid$$apmid:30769332
000867922 0247_ $$2WOS$$aWOS:000462053300001
000867922 037__ $$aFZJ-2019-06520
000867922 082__ $$a530
000867922 1001_ $$00000-0001-6543-203X$$aCojocaru-Mirédin, Oana$$b0
000867922 245__ $$aRole of grain boundaries in Ge–Sb–Te based chalcogenide superlattices
000867922 260__ $$aBristol$$bIOP Publ.$$c2019
000867922 3367_ $$2DRIVER$$aarticle
000867922 3367_ $$2DataCite$$aOutput Types/Journal article
000867922 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576588983_32427
000867922 3367_ $$2BibTeX$$aARTICLE
000867922 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867922 3367_ $$00$$2EndNote$$aJournal Article
000867922 520__ $$aInterfacial phase change memory devices based on a distinct nanoscale structure called superlattice have been shown to outperform conventional phase-change devices. This improvement has been attributed to the hetero-interfaces, which play an important role for the superior device characteristics. However, the impact of grain boundaries (GBs), usually present in large amounts in a standard sputter-deposited superlattice film, on the device performance has not yet been investigated.Therefore, in the present work, we investigate the structure and composition of superlattice films by high resolution x-ray diffraction (XRD) cross-linked with state-of-the art methods, such as correlative microscopy, i.e. a combination of high-resolution transmission electron microscopy and atom probe tomography to determine the structure and composition of GBs at the nanometer scale. Two types of GBs have been identified: high-angle grain boundaries (HAGBs) present in the upper part of a 340 nm-thick film and low-angle grain boundaries present in the first 40 nm of the bottom part of the film close to the substrate. We demonstrate that the strongest intermixing takes place at HAGBs, where heterogeneous nucleation of Ge2Sb2Te5 can be clearly determined. Yet, the Ge1Sb2Te4 phase could also be detected in the near vicinity of a low-angle grain boundary. Finally, a more realistic view of the intermixing phenomenon in Ge–Sb–Te based chalcogenide superlattices will be proposed. Moreover, we will discuss the implications of the presence of GBs on the bonding states and device performance.
000867922 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000867922 588__ $$aDataset connected to CrossRef
000867922 7001_ $$00000-0003-4992-7037$$aHollermann, Henning$$b1
000867922 7001_ $$00000-0002-8280-5413$$aMio, Antonio M$$b2
000867922 7001_ $$00000-0002-7947-0309$$aWang, Anthony Yu-Tung$$b3
000867922 7001_ $$0P:(DE-Juel1)176716$$aWuttig, Matthias$$b4$$eCorresponding author
000867922 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/ab078b$$gVol. 31, no. 20, p. 204002 -$$n20$$p204002 -$$tJournal of physics / Condensed matter Condensed matter$$v31$$x1361-648X$$y2019
000867922 8564_ $$uhttps://juser.fz-juelich.de/record/867922/files/Cojocaru-Mir%C3%A9din_2019_J._Phys.__Condens._Matter_31_204002.pdf$$yRestricted
000867922 8564_ $$uhttps://juser.fz-juelich.de/record/867922/files/Cojocaru-Mir%C3%A9din_2019_J._Phys.__Condens._Matter_31_204002.pdf?subformat=pdfa$$xpdfa$$yRestricted
000867922 909CO $$ooai:juser.fz-juelich.de:867922$$pVDB
000867922 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b4$$kFZJ
000867922 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000867922 9141_ $$y2019
000867922 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000867922 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000867922 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867922 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867922 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2017
000867922 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867922 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867922 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867922 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867922 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867922 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867922 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867922 920__ $$lyes
000867922 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000867922 980__ $$ajournal
000867922 980__ $$aVDB
000867922 980__ $$aI:(DE-Juel1)PGI-10-20170113
000867922 980__ $$aUNRESTRICTED