001     867923
005     20210130003945.0
024 7 _ |a 10.1002/pssr.201800578
|2 doi
024 7 _ |a 1862-6254
|2 ISSN
024 7 _ |a 1862-6270
|2 ISSN
024 7 _ |a 2128/23671
|2 Handle
024 7 _ |a altmetric:44099265
|2 altmetric
024 7 _ |a WOS:000465029000006
|2 WOS
037 _ _ |a FZJ-2019-06521
082 _ _ |a 530
100 1 _ |a Dück, Matthias M.
|0 0000-0003-2016-630X
|b 0
245 _ _ |a Disorder Control in Crystalline GeSb 2 Te 4 and its Impact on Characteristic Length Scales
260 _ _ |a Weinheim
|c 2019
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1576594121_476
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Crystalline GeSb2Te4 (GST) is a remarkable material, as it allows to continuously tune the electrical resistance by orders of magnitude without involving a structural phase transition or stoichiometric changes. While well‐ordered specimen are metallic, increasing amounts of disorder eventually lead to an insulating state with vanishing conductivity in the 0 K limit, but a similar number of charge carriers. Hence, GST provides ideal grounds to explore the impact of disorder on transport properties. Here, a sputter‐deposition process is employed that enables growing biaxially textured GST films with large grain sizes on mica substrates. The resulting films exhibit a systematic variation between metallic and truly insulating specimen upon varying deposition temperature. Transport measurements reveal that their electron mean free path can be altered by a factor of 20, while always remaining more than an order of magnitude smaller than the lateral grain size. This proves unequivocally that grain boundaries play a negligible role for electron scattering, while intra‐grain scattering, presumably by disordered vacancies, dominates. These findings underline that the insulating state and the system's evolution toward metallic conductivity are intrinsic properties of the material.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schäfer, Tobias
|b 1
700 1 _ |a Jakobs, Stefan
|b 2
700 1 _ |a Schön, Carl‐Friedrich
|b 3
700 1 _ |a Niehaus, Hannah
|b 4
700 1 _ |a Cojocaru‐Mirédin, Oana
|b 5
700 1 _ |a Wuttig, Matthias
|0 P:(DE-Juel1)176716
|b 6
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/pssr.201800578
|g Vol. 13, no. 4, p. 1800578 -
|0 PERI:(DE-600)2259465-6
|n 4
|p 1800578 -
|t Physica status solidi / Rapid research letters Rapid research letters [...]
|v 13
|y 2019
|x 1862-6270
856 4 _ |u https://juser.fz-juelich.de/record/867923/files/D-ck_et_al-2019-physica_status_solidi_%28RRL%29_-_Rapid_Research_Letters.pdf
|y Restricted
856 4 _ |y Published on 2019-01-02. Available in OpenAccess from 2020-01-02.
|u https://juser.fz-juelich.de/record/867923/files/1806.08636.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/867923/files/D-ck_et_al-2019-physica_status_solidi_%28RRL%29_-_Rapid_Research_Letters.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2019-01-02. Available in OpenAccess from 2020-01-02.
|x pdfa
|u https://juser.fz-juelich.de/record/867923/files/1806.08636.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:867923
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)176716
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI-R : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21