000867942 001__ 867942
000867942 005__ 20240708133400.0
000867942 0247_ $$2doi$$a10.1016/j.hedp.2017.02.012
000867942 0247_ $$2ISSN$$a1574-1818
000867942 0247_ $$2ISSN$$a1878-0563
000867942 0247_ $$2WOS$$aWOS:000397016200014
000867942 037__ $$aFZJ-2019-06535
000867942 082__ $$a530
000867942 1001_ $$0P:(DE-HGF)0$$aRosato, J.$$b0$$eCorresponding author
000867942 245__ $$aDevelopment of a hybrid kinetic-fluid model for line radiation transport in magnetic fusion plasmas
000867942 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000867942 3367_ $$2DRIVER$$aarticle
000867942 3367_ $$2DataCite$$aOutput Types/Journal article
000867942 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576510489_618
000867942 3367_ $$2BibTeX$$aARTICLE
000867942 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867942 3367_ $$00$$2EndNote$$aJournal Article
000867942 520__ $$aWe report on a transport model for the Lyman line radiation in optically thick divertor plasma conditions encountered in exhaust systems in magnetic fusion devices. The model is designed to switch automatically between a kinetic and a continuum description according to the plasma conditions and to the spectral range. A kinetic treatment is retained for photons with a large mean free path (line wings), whereas a continuum description of the radiation field is invoked in highly absorbing or scattering regions (core photons). Prototypical calculations of this so-called δf Monte Carlo type of the Lyman α photo-excitation rate in slab geometry are performed as an illustration. The hybrid method is suggested as a candidate for speeding up the kinetic transport codes currently involved in magnetic fusion research for ITER and DEMO divertor (power and particle exhaust system) design.
000867942 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000867942 588__ $$aDataset connected to CrossRef
000867942 7001_ $$0P:(DE-HGF)0$$aMarandet, Y.$$b1
000867942 7001_ $$0P:(DE-Juel1)5006$$aReiter, D.$$b2
000867942 7001_ $$0P:(DE-HGF)0$$aStamm, R.$$b3
000867942 773__ $$0PERI:(DE-600)2213634-4$$a10.1016/j.hedp.2017.02.012$$gVol. 22, p. 73 - 76$$p73 - 76$$tHigh energy density physics$$v22$$x1574-1818$$y2017
000867942 909CO $$ooai:juser.fz-juelich.de:867942$$pVDB
000867942 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5006$$aForschungszentrum Jülich$$b2$$kFZJ
000867942 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000867942 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHIGH ENERG DENS PHYS : 2017
000867942 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867942 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867942 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867942 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867942 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867942 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867942 920__ $$lyes
000867942 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000867942 980__ $$ajournal
000867942 980__ $$aVDB
000867942 980__ $$aI:(DE-Juel1)IEK-4-20101013
000867942 980__ $$aUNRESTRICTED
000867942 981__ $$aI:(DE-Juel1)IFN-1-20101013