| Home > Publications database > Development of a hybrid kinetic-fluid model for line radiation transport in magnetic fusion plasmas > print |
| 001 | 867942 | ||
| 005 | 20240708133400.0 | ||
| 024 | 7 | _ | |a 10.1016/j.hedp.2017.02.012 |2 doi |
| 024 | 7 | _ | |a 1574-1818 |2 ISSN |
| 024 | 7 | _ | |a 1878-0563 |2 ISSN |
| 024 | 7 | _ | |a WOS:000397016200014 |2 WOS |
| 037 | _ | _ | |a FZJ-2019-06535 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Rosato, J. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Development of a hybrid kinetic-fluid model for line radiation transport in magnetic fusion plasmas |
| 260 | _ | _ | |a Amsterdam [u.a.] |c 2017 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1576510489_618 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a We report on a transport model for the Lyman line radiation in optically thick divertor plasma conditions encountered in exhaust systems in magnetic fusion devices. The model is designed to switch automatically between a kinetic and a continuum description according to the plasma conditions and to the spectral range. A kinetic treatment is retained for photons with a large mean free path (line wings), whereas a continuum description of the radiation field is invoked in highly absorbing or scattering regions (core photons). Prototypical calculations of this so-called δf Monte Carlo type of the Lyman α photo-excitation rate in slab geometry are performed as an illustration. The hybrid method is suggested as a candidate for speeding up the kinetic transport codes currently involved in magnetic fusion research for ITER and DEMO divertor (power and particle exhaust system) design. |
| 536 | _ | _ | |a 174 - Plasma-Wall-Interaction (POF3-174) |0 G:(DE-HGF)POF3-174 |c POF3-174 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Marandet, Y. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Reiter, D. |0 P:(DE-Juel1)5006 |b 2 |
| 700 | 1 | _ | |a Stamm, R. |0 P:(DE-HGF)0 |b 3 |
| 773 | _ | _ | |a 10.1016/j.hedp.2017.02.012 |g Vol. 22, p. 73 - 76 |0 PERI:(DE-600)2213634-4 |p 73 - 76 |t High energy density physics |v 22 |y 2017 |x 1574-1818 |
| 909 | C | O | |o oai:juser.fz-juelich.de:867942 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)5006 |
| 913 | 1 | _ | |a DE-HGF |l Kernfusion |1 G:(DE-HGF)POF3-170 |0 G:(DE-HGF)POF3-174 |2 G:(DE-HGF)POF3-100 |v Plasma-Wall-Interaction |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b HIGH ENERG DENS PHYS : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|