000867947 001__ 867947
000867947 005__ 20230426083217.0
000867947 0247_ $$2doi$$a10.1103/PhysRevB.95.094111
000867947 0247_ $$2ISSN$$a0163-1829
000867947 0247_ $$2ISSN$$a0556-2805
000867947 0247_ $$2ISSN$$a1050-2947
000867947 0247_ $$2ISSN$$a1094-1622
000867947 0247_ $$2ISSN$$a1095-3795
000867947 0247_ $$2ISSN$$a1098-0121
000867947 0247_ $$2ISSN$$a1538-4489
000867947 0247_ $$2ISSN$$a1550-235X
000867947 0247_ $$2ISSN$$a2469-9950
000867947 0247_ $$2ISSN$$a2469-9969
000867947 0247_ $$2Handle$$a2128/23675
000867947 0247_ $$2WOS$$aWOS:000396271400002
000867947 037__ $$aFZJ-2019-06540
000867947 082__ $$a530
000867947 1001_ $$aChen, C.$$b0
000867947 245__ $$aDielectric properties of amorphous phase-change materials
000867947 260__ $$aWoodbury, NY$$bInst.$$c2017
000867947 3367_ $$2DRIVER$$aarticle
000867947 3367_ $$2DataCite$$aOutput Types/Journal article
000867947 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576595445_618
000867947 3367_ $$2BibTeX$$aARTICLE
000867947 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867947 3367_ $$00$$2EndNote$$aJournal Article
000867947 520__ $$aThe dielectric function of several amorphous phase-change materials has been determined by employing a combination of impedance spectroscopy (9 kHz–3 GHz) and optical spectroscopy from the far- (20cm−1, 0.6 THz) to the near- (12000cm−1, 360 THz) infrared, i.e., from the DC limit to the first interband transition. While phase-change materials undergo a change from covalent bonding to resonant bonding on crystallization, the amorphous and crystalline phases of ordinary chalcogenide semiconductors are both governed by virtually the same covalent bonds. Here, we study the dielectric properties of amorphous phase-change materials on the pseudobinary line between GeTe and Sb2Te3. These data provide important insights into the charge transport and the nature of bonding in amorphous phase-change materials. No frequency dependence of permittivity and conductivity is discernible in the impedance spectroscopy measurements. Consequently, there are no dielectric relaxations. The frequency-independent conductivity is in line with charge transport via extended states. The static dielectric constant significantly exceeds the optical dielectric constant. This observation is corroborated by transmittance measurements in the far infrared, which show optical phonons. From the intensity of these phonon modes, a large Born effective charge is derived. Nevertheless, it is known that crystalline phase-change materials such as GeTe possess even significantly larger Born effective charges. Crystallization is hence accompanied by a huge increase in the Born effective charge, which reveals a significant change of bonding upon crystallization. In addition, a clear stoichiometry trend in the static dielectric constant along the pseudobinary line between GeTe and Sb2Te3 has been identified.
000867947 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000867947 542__ $$2Crossref$$i2017-03-14$$uhttps://creativecommons.org/licenses/by/4.0/
000867947 588__ $$aDataset connected to CrossRef
000867947 7001_ $$aJost, P.$$b1
000867947 7001_ $$aVolker, H.$$b2
000867947 7001_ $$aKaminski, M.$$b3
000867947 7001_ $$aWirtssohn, M.$$b4
000867947 7001_ $$aEngelmann, U.$$b5
000867947 7001_ $$aKrüger, K.$$b6
000867947 7001_ $$aSchlich, F.$$b7
000867947 7001_ $$aSchlockermann, C.$$b8
000867947 7001_ $$aLobo, R. P. S. M.$$b9
000867947 7001_ $$0P:(DE-Juel1)176716$$aWuttig, M.$$b10$$eCorresponding author
000867947 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.95.094111$$bAmerican Physical Society (APS)$$d2017-03-14$$n9$$p094111$$tPhysical Review B$$v95$$x2469-9950$$y2017
000867947 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.95.094111$$gVol. 95, no. 9, p. 094111$$n9$$p094111$$tPhysical review / B$$v95$$x2469-9950$$y2017
000867947 8564_ $$uhttps://juser.fz-juelich.de/record/867947/files/PhysRevB.95.094111.pdf$$yOpenAccess
000867947 8564_ $$uhttps://juser.fz-juelich.de/record/867947/files/PhysRevB.95.094111.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867947 909CO $$ooai:juser.fz-juelich.de:867947$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b10$$kFZJ
000867947 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000867947 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867947 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000867947 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867947 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000867947 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867947 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867947 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867947 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867947 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867947 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867947 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867947 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867947 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867947 920__ $$lyes
000867947 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0
000867947 980__ $$ajournal
000867947 980__ $$aVDB
000867947 980__ $$aUNRESTRICTED
000867947 980__ $$aI:(DE-Juel1)PGI-10-20170113
000867947 9801_ $$aFullTexts
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.21.1450
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2009
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.3301579
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat1627
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3191670
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/aelm.201400056
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2330
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2226
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2934
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3456
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.081204
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.054201
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ja01349a006
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat1215
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.035202
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.054203
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.135501
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/anie.201404223
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S1369-7021(08)70118-4
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/16/4/043015
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.235201
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.020201
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2157
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.205502
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1147/rd.524.0465
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201004255
000867947 999C5 $$1D. Emin$$2Crossref$$oD. Emin Linear and Nonlinear Electron Transport in Solids 1976$$tLinear and Nonlinear Electron Transport in Solids$$y1976
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/TED.2009.2016397
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/rphysap:0198900240120107100
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4795592
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jnoncrysol.2010.05.008
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3719/12/21/013
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms8467
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ssc.2012.02.018
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4816283
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.373041
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3093(71)90036-6
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.024503
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1979470
000867947 999C5 $$1E. Barsoukov$$2Crossref$$9-- missing cx lookup --$$a10.1002/0471716243$$y2005
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/epjap/2011110094
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10853-012-6745-z
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4729528
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00018738700101971
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.vacuum.2005.05.003
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.4.1360
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.55.10355
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.125111
000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep25981
000867947 999C5 $$1H. B. Gray$$2Crossref$$oH. B. Gray Electrons and Chemical Bonding 1965$$tElectrons and Chemical Bonding$$y1965