000867947 001__ 867947 000867947 005__ 20230426083217.0 000867947 0247_ $$2doi$$a10.1103/PhysRevB.95.094111 000867947 0247_ $$2ISSN$$a0163-1829 000867947 0247_ $$2ISSN$$a0556-2805 000867947 0247_ $$2ISSN$$a1050-2947 000867947 0247_ $$2ISSN$$a1094-1622 000867947 0247_ $$2ISSN$$a1095-3795 000867947 0247_ $$2ISSN$$a1098-0121 000867947 0247_ $$2ISSN$$a1538-4489 000867947 0247_ $$2ISSN$$a1550-235X 000867947 0247_ $$2ISSN$$a2469-9950 000867947 0247_ $$2ISSN$$a2469-9969 000867947 0247_ $$2Handle$$a2128/23675 000867947 0247_ $$2WOS$$aWOS:000396271400002 000867947 037__ $$aFZJ-2019-06540 000867947 082__ $$a530 000867947 1001_ $$aChen, C.$$b0 000867947 245__ $$aDielectric properties of amorphous phase-change materials 000867947 260__ $$aWoodbury, NY$$bInst.$$c2017 000867947 3367_ $$2DRIVER$$aarticle 000867947 3367_ $$2DataCite$$aOutput Types/Journal article 000867947 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576595445_618 000867947 3367_ $$2BibTeX$$aARTICLE 000867947 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000867947 3367_ $$00$$2EndNote$$aJournal Article 000867947 520__ $$aThe dielectric function of several amorphous phase-change materials has been determined by employing a combination of impedance spectroscopy (9 kHz–3 GHz) and optical spectroscopy from the far- (20cm−1, 0.6 THz) to the near- (12000cm−1, 360 THz) infrared, i.e., from the DC limit to the first interband transition. While phase-change materials undergo a change from covalent bonding to resonant bonding on crystallization, the amorphous and crystalline phases of ordinary chalcogenide semiconductors are both governed by virtually the same covalent bonds. Here, we study the dielectric properties of amorphous phase-change materials on the pseudobinary line between GeTe and Sb2Te3. These data provide important insights into the charge transport and the nature of bonding in amorphous phase-change materials. No frequency dependence of permittivity and conductivity is discernible in the impedance spectroscopy measurements. Consequently, there are no dielectric relaxations. The frequency-independent conductivity is in line with charge transport via extended states. The static dielectric constant significantly exceeds the optical dielectric constant. This observation is corroborated by transmittance measurements in the far infrared, which show optical phonons. From the intensity of these phonon modes, a large Born effective charge is derived. Nevertheless, it is known that crystalline phase-change materials such as GeTe possess even significantly larger Born effective charges. Crystallization is hence accompanied by a huge increase in the Born effective charge, which reveals a significant change of bonding upon crystallization. In addition, a clear stoichiometry trend in the static dielectric constant along the pseudobinary line between GeTe and Sb2Te3 has been identified. 000867947 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0 000867947 542__ $$2Crossref$$i2017-03-14$$uhttps://creativecommons.org/licenses/by/4.0/ 000867947 588__ $$aDataset connected to CrossRef 000867947 7001_ $$aJost, P.$$b1 000867947 7001_ $$aVolker, H.$$b2 000867947 7001_ $$aKaminski, M.$$b3 000867947 7001_ $$aWirtssohn, M.$$b4 000867947 7001_ $$aEngelmann, U.$$b5 000867947 7001_ $$aKrüger, K.$$b6 000867947 7001_ $$aSchlich, F.$$b7 000867947 7001_ $$aSchlockermann, C.$$b8 000867947 7001_ $$aLobo, R. P. S. M.$$b9 000867947 7001_ $$0P:(DE-Juel1)176716$$aWuttig, M.$$b10$$eCorresponding author 000867947 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.95.094111$$bAmerican Physical Society (APS)$$d2017-03-14$$n9$$p094111$$tPhysical Review B$$v95$$x2469-9950$$y2017 000867947 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.95.094111$$gVol. 95, no. 9, p. 094111$$n9$$p094111$$tPhysical review / B$$v95$$x2469-9950$$y2017 000867947 8564_ $$uhttps://juser.fz-juelich.de/record/867947/files/PhysRevB.95.094111.pdf$$yOpenAccess 000867947 8564_ $$uhttps://juser.fz-juelich.de/record/867947/files/PhysRevB.95.094111.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000867947 909CO $$ooai:juser.fz-juelich.de:867947$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000867947 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176716$$aForschungszentrum Jülich$$b10$$kFZJ 000867947 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0 000867947 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000867947 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000867947 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000867947 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017 000867947 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000867947 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000867947 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000867947 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000867947 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000867947 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000867947 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000867947 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000867947 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000867947 920__ $$lyes 000867947 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x0 000867947 980__ $$ajournal 000867947 980__ $$aVDB 000867947 980__ $$aUNRESTRICTED 000867947 980__ $$aI:(DE-Juel1)PGI-10-20170113 000867947 9801_ $$aFullTexts 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.21.1450 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2009 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.3301579 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat1627 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3191670 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/aelm.201400056 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2330 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2226 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2934 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3456 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.081204 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.054201 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ja01349a006 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat1215 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.035202 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.054203 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.117.135501 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/anie.201404223 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S1369-7021(08)70118-4 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/16/4/043015 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.235201 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.020201 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2157 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.205502 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1147/rd.524.0465 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201004255 000867947 999C5 $$1D. Emin$$2Crossref$$oD. Emin Linear and Nonlinear Electron Transport in Solids 1976$$tLinear and Nonlinear Electron Transport in Solids$$y1976 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/TED.2009.2016397 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/rphysap:0198900240120107100 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4795592 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jnoncrysol.2010.05.008 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3719/12/21/013 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms8467 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ssc.2012.02.018 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4816283 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.373041 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-3093(71)90036-6 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.024503 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1979470 000867947 999C5 $$1E. Barsoukov$$2Crossref$$9-- missing cx lookup --$$a10.1002/0471716243$$y2005 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/epjap/2011110094 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10853-012-6745-z 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4729528 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00018738700101971 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.vacuum.2005.05.003 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.4.1360 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.55.10355 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.125111 000867947 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep25981 000867947 999C5 $$1H. B. Gray$$2Crossref$$oH. B. Gray Electrons and Chemical Bonding 1965$$tElectrons and Chemical Bonding$$y1965